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1. INTRODUCTION 

Several weather forecast centers worldwide routinely 
produce skillful weather predictions using ensemble 
forecast system (Toth and Kalnay 1993, 1997; Wilks 
and Hamill, 2007). North American Ensemble 
Forecast System (NAEFS), officially launched in 
November 2004, is a successful example of applying 
multi-center, multi-model ensemble forecast system to 
estimate the uncertainty of weather forecasts and 
make high-quality probabilistic forecast.  The NAEFS 
combines the two ensemble forecast systems (Global 
Ensemble Forecast System (GEFS) of National 
Weather Service (NWS) and Canadian Meteorological 
Center Ensemble (CMCE) of Meteorological Service 
of Canada (MSC)), which produces a more reliable 
forecast than when either forecast system was used 
alone.  
 
Ensemble forecast is contaminated by system bias 
and random errors (Toth et. al, 2003; Wilks and 
Hamill, 2007). The Statistical Post Process (SPP) is 
used to reduce the forecast bias, improve forecast 
reliability, and enhance the ensemble forecast skill. 
The NAEFS SPP includes bias-correction and 
downscaling. The bias correction in the current 
NAEFS SPP is mainly first moment adjustment by 
applying an adaptive Kalman Filter (KF) technique 
with most recent forecast/observation information (Cui 
et al., 2013). There is no second moment adjustment 
or correction.  
 
The KF algorithm was developed by the NWS at 
National Center of Environmental Prediction (NCEP) 
and was implemented operationally in 2006 to reduce 
the bias of the NAEFS ensemble forecasts. This 
method is fast and does not need storing a large 
amount of sample dataset once initialized, which 
meets the requirement of daily operational run. The 
operational statistical verification since 2006 reveals 
the NAEFS product is significantly enhanced by the 
decaying bias-correction method. However, the 
method is, sometimes, failed during spring and fall 
transition seasons for long lead time.  
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Recently, we have tested the method to improve 
NAEFS 1

st
 moment correction. In order to improve the 

performance of bias correction, 26-year GEFS 
reforecast has been applied in additional to current 
operational NAEFS bias correction process. Several 
different methods have been examined to optimize 
the usage of past 26-year reforecast information. 
Several forecast elements are investigated in this 
study, such as surface temperature, 500hPa 
geopotential height and et al, but we will mainly focus 
on the discussion of surface temperature up to 16 
days.   

 

2. MODEL and DATA 

The current operational GEFS version (v9.01)  was 

implemented on February 14, 2012 at National 

Centers for Environmental Prediction (NCEP). It 

consists of 21 members (one control member and 20 

perturbation members) and is run 4 times daily (00, 

06, 12, and 18 UTC). All members use an identical 

set of physical parameterization (Zhu et al. 2007). The 

model is run at a horizontal resolution of T254 

(~55km) for the first 8 days and T190 (~70km) for the 

later 8 days, with 42 hybrid levels. The climate 

forecast system reanalysis (CFSR) (Saha et al., 2010) 

is used to initialize the simulation. The perturbed initial  

condition uses ensemble transform technique (ETR, 

Wei et al., 2008). The model uncertainty is estimated 

using the stochastic tendencies (STTP) method (Hou 

et al., 2008).  

The reforecast data was generated from the above 

GEFS version but only including 11 members (1 

control member and 10 perturbation members). The 

model was only run at 00UTC cycle for the 10 

perturbation members. The data set used here was 

bilinear interpolated to 1°x1° latitude and longitude 

grids from the native resolution. The data in GRIB2 

format for 00UTC cycle is available since 1985 (+28 

years). We use a subset of the data from 1985 to 

2010 (26 years), obtained from NOAA/ESRL. More 

detail description on model and dataset can be found 

in Hamill et al. (2013).  
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3. METHOD 

a. Bais estimation 
 
In this study, the bias (b) for each lead-time t (24-hour 
interval up to 384 hours), each grid point ( i, j) is 
defined as the difference of best analysis ai,j(t0) and 
forecast fi,j(t) at the same valid time t0 which is up on 
latest available analysis. 
 
      b i,j(t)= fi,j (t) – ai,j (t0)                                            (1)                                                                              

b. Decaying average method 

The detail of the decaying average method can be 
found in Cui et al., (2012). Here we introduce its basic 

equation. Decaying average bias  
p

jiB , (t) is updated 

by considering prior period bias and current bias by 
using decaying average (or KF method) with a weight 

coefficient (w) equal to 0.02. 
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c. Application of reforecast (or hindcast) 

The basic idea for this method is using the knowledge 
about the forecast errors of the same model during a 
similar period in the past years to calibrate current 

forecast. A average reforecast bias 
h

jiB , (t) is 

climatological mean forecast error, obtained from the 

multi-year (N) reforecast ensemble. 
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d. Bias correction  

To remove lead-time dependent bias on model grid, 
new (or bias corrected) forecast F is generated by 

applying decaying-averaged bias (
p

jiB , ) and 

reforecast bias (
h

jiB , ) to raw forecast (fi,j) at each grid 

point (i,j), for each lead time (t), and each parameter. 
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where r is the correlation coefficient estimated by 
linear regression from the joint samples (ensemble 
mean and analysis). To avoid storing large dataset, 
the mean values used in computing r were generated 
from decaying averaging with a weight of 0.10. The 
relative contribution of reforecast and decaying-
averaged bias was quantified by the r

2
. For the two 

spatial cases of r=0 and r=1, the equation represent 
the reforecast bias correction and decaying bias 
correction, respectively.   

f. Methodology of verification 

The calibration of ensemble forecast system is 

evaluated by means of mean forecast error, mean 

absolute forecast error, root means square error 

(RMSE), and continue ranked probability score 

(CRPS). The CRPS score is frequently used for 

evaluating the performance of probabilistic forecasts 

(Zhu et al., 2008; Glahn et al., 2009; Friederichs and 

Thorarinsdottir, 2012). The lower value the CRPS, the 

better the probabilistic system is in terms of both 

reliability and resolution. 

4. Results 

We calibrate 2-m temperature in 2009 and 2010 using 
prior 24-year (1985-2008) and 25-year bias (1985-
2009), respectively. We also calibrate 500hpa height 
in 2009 using 24-year bias. A preliminary check 
shows it is very hard to improve the forecast skill of 
500hpa height, possibly due to its relative small bias 
or insensitivity. Thus, our focus will be on the 
calibration of 2-m temperature. We explore the 
sensitivity of the calibration on the number of training 
years by using the bias from most recent 2 (2008-
2009), 5 (2005-2009), 10 (2000-2009), and 25 (1985-
2009) years of training data, and evaluated using the 
last year (2010) validation. We compare the 
calibration with the two training-data window (1 day 
and 31 days) around the corresponding date in each 
of the training years (25 years).  The impact of sample 
interval on the calibration is estimated by comparing 
verification scores with a sample interval of 1 day and 
7 days within a window of 31 days.  Finally, we apply 
reforecast information to the operational GEFS 
product of NCEP.   

4.1 Calibrating 2010 forecast using 25-year training 
dataset 

Figure 1 shows the verification for 2-m temperature 
over the Northern Hemisphere for 4 seasons. We 
present here a comparison of the results of the raw 
ensemble forecast (ERAW) and two calibrated 
forecasts (Ebc2% and Erf). The Ebc2% and Erf 
denote the bias-corrected forecast with decaying 
averaging and reforecast method, respectively.  The 
GEFS model is apparently under-dispersed for all 
seasons and lead times (see Fig.1a, 1c, 1e, and 1g). 
The raw ensemble forecast (black lines) has a cold 
bias in winter (Fig.1b) and autumn (Fig.1h). 
Conversely, a warm bias is prevalent in spring 
(Fig.1d) and summer (Fig.1f). These biases are 
almost completely corrected by the Erf method (green 
lines). The corrected bias is closer to zero and 
corresponding absolute error and RMSE are also 
smaller than the raw ensembles, hinting the 
effectiveness of the calibration methods in reducing 
the system error of the ensemble forecast. A decaying 

method (Ebc2%) also does  good job for the
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Fig.1. Ensemble mean RMSE (solid lines of left panels), spread (dash lines of left panels), error (solid lines of right 
panels), and absolute error (dash lines of right panels) of 2-m temperature averaged over the Northern Hemisphere 
for the 4 seasons of 2010.  ERAW (black lines), Ebc2% (red lines), and Erf (green lines) are the raw, decaying-bias 
corrected, and reforecast-bias corrected ensemble forecasts, respectively. 
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non-transitional seasons (winter and summer). 
However, the technique does not work well in all 
circumstances as pointed out in Cui et al. (2012).  Fig. 
1d and h reveal applying decaying method leads to a 
degradation of forecast accuracy during transition 
seasons. The maximum degradation occurs in spring. 
The absolute errors (Fig.1d and 1h) in the Ebc2% are 
larger than those of RAW forecast and the RMSEs 
(Fig.1c and 1g) are larger than those of RAW forecast 
only for long-lead time. To determine the underlying 
reason, we display the monthly evolutions of m ean 
error and mean absolute error of 2-m temperature for 
four experiments over the Northern Hemisphere in 
Fig.2. Beside the above three experiments, the result 
for the decaying method with a weight of 10% is also 
added in the comparison. We note a persistent cold 
bias (black lines) in the winter (January and 
February).  In the beginning of the spring (March), the 
cold bias becomes smaller, eventually, turns to warm 
bias in April.  In the two winter months, the Ebc2% 

performance is very similar to the Erf, yielding a more 
accurate forecast than the raw ensemble forecast. 
This is due to the ensemble forecast error being 
relatively consistent among the non-transitional 
months. The 2% decaying averaging is using most 
recent 50-60 days of bias information (Cui et al., 
2012) with the highest weight for the latest 
information. The Ebc2% method is failed in March 
and April, when error characteristics  experience a 
dramatic change within a period of ~50-60 days. In 
April, the Ebc2% uses cold bias, accumulated from 
winter and early spring, to calibrate warm bias in 
spring. This outdated information leads to degrading 
forecast (i.e. an increased warm bias), which is most 
pronounced for longer forecast lead times. This is 
likely due to a larger separation of training data from 
the actual forecast day of interest. In general, the Erf 
has obvious advantage over the Ebc2% and Ebc10%. 

The Ebc10% is slightly better than the Ebc2%.  

                                                

                    

 

Fig. 2 Mean errors (solid lines) and mean absolute errors (dash lines) of 2-m temperature over the Northern 
Hemisphere for January (a), February (b), March (c), and April (d), 2010. ERAW, Ebc2%, Ebc10%, and Erf are the 
raw forecast, decaying-bias corrected forecasts with two weights (2% and 10%), and reforecast-bias corrected 

ensemble forecast, respectively. 
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4.2 Comparison between 2009 and 2010 
 
The notable improvement in the accuracy of T2m 
forecast by the Erf is impressive. The key question is 
if this improvement only occurs particularly for 2010.  
To answer this, we also calibrate the 2009 forecast 
and compare the results to 2010. The data prior to the 
validation year (2009) were used to train the 
reforecast-bias correction algorithm. 
 
Figure 3 compares the mean error and mean absolute 
error of 2-m temperature between 2009 and 2010 for 
the Northern Hemisphere. The performance in 2009 

is, qualitatively, very similar to that of 2010. The 
winter cold bias and summer warm bias in the raw 
ensemble can also be seen in 2009. The Ebc2%, 
again, improve the forecast in the non-transition 
seasons for all lead times but not in the other two 
seasons, when the Ebc2% tends to degrade the long-
lead time forecasts. The Erf improves the ensemble 
forecast over the Ebc2% for almost all lead times and 
seasons as noted in 2010. The biases for all seasons 

are, again, handily removed by the Erf.  
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Fig.3 Comparisons of mean errors (solid lines) and mean absolute errors (dash lines) of 2-m temperature over the 
Northern Hemisphere between 2009 and 2010 for winter (a), spring (b), summer (c) and autumn (d).  ERAW, Ebc2%, 
Ebc10%, and Erf are the raw forecast, decaying-bias corrected forecasts with two weights (2% and 10%), and 
reforecast-bias corrected ensemble forecast, respectively. 
 
 
 
 
4.3 Calibration using various  training samples 
 
The CRPS of forecasts from the RAW (black lines) 
ensemble and calibrated ensembles (color lines) with 
training sample of various sizes are displayed in 
Fig.4.  Figure 4a and 4b examine the sensitivity of 
forecast skill on the number of sample year and 
interval day, respectively. All calibrated forecasts 
demonstrate a better performance than the raw 
forecast. The difference among the calibrated 
forecasts is relatively small. The scores for 10 and 25-
years with a 31-day window are very similar, slightly  
 
 

 
 
better than the other smaller training samples (Fig. 
4a), suggesting that ten-year dataset is large enough 
to obtain most usable skill. The CRPS of the forecasts 
from the calibration with the 25-year weekly dataset 
(blue line) and 25-year daily dataset (green line) 
within a 31-day window are almost identical (Fig.4b) 
and both are better than the result with single data 
(red line) from each year. Therefore, the 25-year 
weekly training dataset is a good option to reduce 
computational expense and keep desiring skill. These 
results are consistent with the findings of previous 
researchers (Hamill et al., 2004, Hagedorn et al., 
2008), although they have used different model or 
GEFS version.  
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Fig. 4 CRPS of 2-m temperature averaged from 1 Mar 2010 to 31 May 2010 over the Northern Hemisphere. ERAW is 
the raw ensemble forecast. Erf is the reforecast-bias corrected ensemble forecast with historical data at exact 
forecast date.  Ey2d31rf, Ey5d31rf, Ey10d31rf, and Ey25d31rf in Fig4a are the reforecast-bias corrected ensemble 
forecasts with historical data span a time window of 31 days centered at forecast day for the most recent 2, 5, 10, 25 
years, respectively. Ey25d31rf and Ey25d31int7rf in Fig. 4b are the reforecast-bias corrected ensemble forecasts with 
historical data covered a time window of 31 days centered at forecast day.  The frequency of data sample for 

Ey25d31rf and Ey25d31int7rf of Fig 4b are 1 and 7 days, respectively. 

 
4.4. Using reforecast to improve NCEP bias-corrected 
product 
 
Having seen the remarkable value of using reforecast 
information, we now combine the reforecast method 
with the operational decaying method together, aimed 
to provide an option of improving forecast accuracy 
for transitional season. Fig. 5 displays the change of 
r
2
 with forecast lead-time averaged over the Northern 

Hemisphere for 4 seasons. The r
2 

denotes the square 
of correlation coefficient between ensemble mean and  
 

 Fig. 5 The change of square of correlation coefficient 
with forecast lead time for the 4 seasons of 2010. 

 
 
analysis. Forecast ability declines as forecast lead 
time increases. There are no significant differences of 
r
2
 among seasons. The r

2
 values are slightly smaller 

in summer than other seasons for short lead times . 
 
Figure 6 displays the time series of RMSE for the 
ERAW, Ebc2% and ER2 for 24 and 240-hr forecasts. 
The Ebc2% and ER2 represent the bias -corrected 
forecast with decaying method and decaying- 
reforecast combined method, respectively.  
 
For 24-hr forecast (Fig.6a), the RMSE in Ebc2% is 
smaller than the raw forecast almost all times. 
Including reforecast bias-correction (ER2) does not 
change the forecast accuracy too much since the 
weight of reforecast is small at this short lead-time 
forecast. For 240-hr (Fig. 6c and d) forecast, the 
Ebc2% does not always improve the forecast with a 
significant degradation in spring.   Our results agree 
with those in Cui et al. (2012), who found that 
decaying-averaging method mainly works well for the 
first few days.   It is very clear that adding reforecast 
information improve the forecast accuracy for all time 
with maximum benefits on April, May, and June. 
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Fig. 6 RMSE  of  NH 2-m temperature for the 24hr (a) and 240hr (b) forecasts  of the 2009–2010 winter. ERAW, 
Ebc2%, and ER2 denote the raw, decaying-bias corrected, and decaying-reforecast bias-corrected ensemble 
forecast, respectively. 
 

5. CONCLUSION 
 
In this paper, we develop the method to improve 
NAEFS 1

st
 moment correction using GEFS reforecast 

dataset.  
 
We use 24-year and 25-year GEFS reforecast bias 
information to calibrate 2009 and 2010 forecast, 
respectively. We found that the forecast of 2-m 
temperature is strongly biased for the Northern 
Hemisphere with a cold bias in winter and warm bias 
in summer. The bias is mostly removed by reforecast 
method. Decaying method improves the forecast skill 
in winter and summer as good as reforecast method, 
but it degrades the long-lead forecast during 
transitional seasons due to dramatic change in bias 
characteristic. 
 
It is very difficult to improve the forecast skills for 
500hPa height. This is possibly due to less bias or 
insensitivity of this variable to bias correction.  
         
 
Several different methods have been examined to 
optimize the usage of past 25-year reforecast 
information. This is important considering limited 
computing resource. Based on the sensitivity tests for 
different reforecast samples, we found that 25-year 
weekly training dataset is a good option to reduce 
computational expense and keep desiring skill.  
 
 
Bias and its seasonal variation are model-dependent. 
Whether the improvement found here will occur for 
the new GEFS version need to be confirmed in the 
future. 
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