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ABSTRACT

Atmospheric variability is driven not only by internal dynamics, but also by external forcing, such as soil states, SST,
snow, sea-ice cover, and so on. To investigate the forecast uncertainties and effects of land surface processes on numerical
weather prediction, we added modules to perturb soil moisture and soil temperature into NCEP’s Global Ensemble Forecast
System (GEFS), and compared the results of a set of experiments involving different configurations of land surface and
atmospheric perturbation. It was found that uncertainties in different soil layers varied due to the multiple timescales of
interactions between land surface and atmospheric processes. Perturbations of the soil moisture and soil temperature at
the land surface changed sensible and latent heat flux obviously, as compared to the less or indirect land surface perturbation
experiment from the day-to-day forecasts. Soil state perturbations led to greater variation in surface heat fluxes that transferred
to the upper troposphere, thus reflecting interactions and the response to atmospheric external forcing. Various verification
scores were calculated in this study. The results indicated that taking the uncertainties of land surface processes into account
in GEFS could contribute a slight improvement in forecast skill in terms of resolution and reliability, a noticeable reduction
in forecast error, as well as an increase in ensemble spread in an under-dispersive system. This paper provides a preliminary
evaluation of the effects of land surface processes on predictability. Further research using more complex and suitable methods
is needed to fully explore our understanding in this area.
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1. Introduction

The importance of land surface processes to numerical
weather prediction (NWP) has been recognized in recent
years. The first few meters of ground below Earth’s surface
has a thermal capacity comparable to 1/10 of the entire atmo-
spheric column, which could mean the change in atmospheric
temperature through this layer is considerable (Lewis, 2007).
It is generally agreed that land surface processes have a sub-
stantial influence on both large-scale and mesoscale circula-
tion (Chen and Dudhia, 2001). Large-scale weather patterns
are influenced by land surface processes as a consequence of
change in moisture influx, static stability, convergence and
divergence of flow patterns, vertical motions, and latent heat-
ing (Nicholson, 1988; Betts et al., 1996; Li and Zou, 2009).
An improved understanding of atmosphere–land interaction,
along with accurate measurements of land-surface properties,
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especially soil moisture, would constitute a major intellec-
tual advantage. And potentially, such progress could lead to
dramatic improvements in tackling a number of forecasting
problems, including the location and timing of deep convec-
tion over land, quantitative precipitation forecasting, and sea-
sonal climate prediction (National Research Council, 1998).

Among all currently available numerical prediction meth-
ods, ensemble forecasting has developed at a particularly fast
pace during the last decade, and is expected to continue to
play an increasingly important role in weather forecasting
compared with other approaches. In ensemble forecasts, a
set of different states is discretely sampled from a probability
density function to account for uncertainty in the initial con-
ditions. To achieve a reliable probabilistic weather forecast
system, a series of schemes have been tested and applied by
various NWP centers and researchers. For instance: the time-
lagged method, which is a very simple but effective method
(Yuan et al., 2008, 2009); the combined application of en-
semble data assimilation and the singular vector based per-
turbations method at the European Centre for Medium-Range
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Weather Forecasts (Buizza et al., 2008, 2010); the ensem-
ble Kalman filter (EnKF) method plus stochastic perturba-
tion, which is operated at NCEP (Hou et al., 2016); the EnKF
with a four-dimensional data method plus a kinetic energy
backscatter algorithm, used at the Meteorological Service of
Canada (Charron et al., 2010); and bred vectors, employed
at the National Meteorological Center, China Meteorological
Administration (Deng et al., 2010). Among these methods, at
the present moment in time, the EnKF is particularly widely
studied and applied as an initial condition perturbation or data
assimilation method (Xue et al., 2006; Gao and Xue, 2008;
Weng and Zhang, 2012).

Although ensemble products are playing an increasingly
important role in daily probabilistic forecasts, the issue of un-
reliability and under-dispersion remains a known problem in
the field of ensemble forecasting (Hamill and Colucci, 1997).
Sutton et al. (2006) attributed the problems to the inadequate
resolution of ensemble members (Mullen and Buizza, 2002),
suboptimal methods for generating initial conditions (Hamill
et al., 2000; Wang and Bishop, 2003), model biases related
to problems in the parameterization of surface and bound-
ary layer effects and the diurnal cycle (Davis et al., 2003), or
a lack of perturbation in the characteristics of the land sur-
face state. On the other hand, since atmospheric variability
is driven not only by internal dynamics, but also by exter-
nal forcing factors, such as soil states, SST, snow and sea-ice
cover etc., consideration of the uncertainties and effects of
land surface processes on the performance of an ensemble
prediction system (EPS) is of great importance for improving
its forecasting skill. Most methods dealing with the uncer-
tainties are related to the initial state of the atmosphere, but
only a small amount of work to perturb the initial state of the
land surface in ensemble systems has been carried out thus
far. Therefore, in most EPSs, the initial state of soil moisture
and soil temperature is the same for each member in most
currently available operational ensemble prediction systems
(Wang et al., 2010). Sutton et al. (2006) tried to perturb the
soil moisture to test its effect on temperature forecasts and
precipitation forecasts; Wang et al. (2010) generated pertur-
bations of surface variables, such as soil moisture content and
surface temperature etc., to represent uncertainties in the sur-
face initial conditions; McLay et al. (2012) introduced SST
variation in the U.S. Navy’s GEFS; while at the UK Met Of-
fice, its operational EPS contains SST (stochastic process)
and soil-moisture perturbations (Tennant and Beare, 2014).
Until now, most research related to land surface perturbation
has been carried out in regional ensemble forecast systems.
But what is the effect at the global scale (i.e. in a GEFS)?
Furthermore, most studies have focused on the effects on
near-surface variables, but what are the effects on forecast
variables in the middle or upper levels? And what is the ef-
fect if we consider only the soil uncertainties in the ensemble
forecast system? In the present work, using the addition of a
module into NCEP’s GEFS (Wei et al., 2005, 2008) to per-
turb the soil moisture and soil temperature, and comparing
the results of a set of parallel experiments involving different
configurations of land surface and atmospheric perturbation,

we investigated whether or not the perturbation of soil states
only could improve the system’s forecasting skill. The aim in
carrying out this study was to expand upon the relatively lim-
ited knowledge regarding land surface process perturbations
in EPSs.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief description of the parallel experimen-
tal design in the GEFS. Section 3 reports the uncertainties
and changes in variables as a result of land surface perturba-
tion. A probabilistic verification of the results regarding the
predictability of the GEFS under the different configurations
is presented in section 4. Finally, discussion and conclusions
are provided in section 5.

2. Configuration of the GEFS

The NCEP’s GEFS (http://www.emc.ncep.noaa.gov/gmb/
yzhu/html/ENS IMP.html) was developed based on the ear-
lier Global Forecast System (GFS) (Version 8.0.0, T126L28,
NCEP Office Note 442) (Global Climate and Weather Mod-
eling Branch, 2003). The horizontal resolution is approxi-
mately 110 km in both the analysis and forecast model for
the four GFS cycles at 0000, 0600, 1200 and 1800 UTC.
The vertical resolution is 64 hybrid layers for the entire 16-
day forecast. The GFS land-surface model component is the
Noah Land Surface Model (Noah LSM; Chen et al., 1996).
Its land-surface parameterization has four subsurface lay-
ers (10, 40, 100 and 200 cm). The model also contains an
improved algorithm of frozen soil, ground heat flux, and en-
ergy/water balance at the surface, along with reformulated
infiltration and runoff functions and an upgraded vegetation
fraction. The heat capacity, thermal and hydraulic diffusivity,
and hydraulic conductivity coefficients are a function of the
soil moisture content (Pan and Mahrt, 1987). To obtain ini-
tial values of soil moisture and soil temperature, Noah LSM
cycles continuously on itself in the Global Data Assimilation
System cycles. Values are updated at each model forecast
integration time step in response to land-surface forcing (pre-
cipitation, surface solar radiation, and near-surface parame-
ters: temperature, humidity, and wind speed) (Campana and
Caplan, 2005).

The initial perturbations of the GEFS are generated by
an ensemble transform (ET) with rescaling technique, and
the methods are the same as employed in Bishop and Toth
(1999), Wei et al. (2008) and Deng et al. (2012). To test
the effect of land surface process perturbations on the fore-
casting skill of the GEFS, parallel experiments were devised
(Fig. 1). On one side, perturbations were included only in the
atmospheric component, named the “control run”. Its charac-
teristics included: initial perturbation (ET technique) in the
atmospheric component, with four ensemble members; and
the tropical cyclone relocation technique. On the other side,
in the sensitivity run, perturbations were included in both the
atmospheric and land surface processes, besides all the char-
acteristics in the control run, with two methods: the “replace-
ment run” began with the control surface analysis (i.e. cold
start), and then, after one cycle (6 h), each member used its
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Fig. 1. Configuration of the atmosphere perturbation (control) run and the atmosphere/surface
perturbation (replacement and rescaled) runs.

forecasted soil temperature and soil moisture from the previ-
ous cycle for its initial surface condition, and so on until the
end of the experiment; in the “rescaled run”, the soil mois-
ture and temperature differences between each forecast mem-
ber and the deterministic GFS model forecast were added.
To maintain the values of the perturbations within a reason-
able range, the maximum amplitude of the perturbations was
scaled to the climate reference values. For all the perturbation
tests, the variables perturbed included soil temperature (four
layers: 0–10 cm; 10–40 cm; 40–100 cm; 100–200 cm) and
soil moisture (four layers, similar to soil temperature, includ-
ing soil volumetric water content in the fraction and liquid
soil moisture). To avoid the model drifting after long-term
integration (several months later), an exponential function of
soil moisture (as well as soil temperature) perturbation and
soil climate was devised in the experiment [after the land sur-
face process devised in the Global Spectral Forecast Model
(T213/T639) at the National Meteorological Center, China
Meteorological Administration]. That is, at the beginning of
the model integration period, the perturbation part was main-
tained as a comparatively larger component, and then the cli-
mate states gradually dominated; after three months of in-
tegration, the soil states would finally convert to the model
climate value. As for the rescaled run, because the sum of
soil states perturbations was near zero, it would also prevent
model from drifting (Tennant and Beare, 2014). The test pe-
riod was from 1200 UTC 22 August 2006 to 1200 UTC 24
September 2006.

3. Uncertainties and variation resulting from

land surface perturbation

As described in section 2, the four members in the con-
trol experiments used the same initial land surface conditions,
whereas they were different in the sensitivity run. Therefore,
the differences in the results of the three experiments could
only result from the uncertainties in the soil temperature and
soil moisture. To investigate whether these uncertainties im-
pose any impacts on the GEFS, the changes in the land sur-
face processes and free atmosphere were explored through
comparison with the control experiment.

3.1. Soil perturbation variation

To analyze the effects of perturbing land surface vari-
ables on the predictability of the GEFS, we began by ex-

amining the variation in soil properties due to land surface
perturbation. Firstly, the average volumetric soil moisture
difference between the four perturbation members (replace-
ment or rescaled run) and the control experiment (four mem-
bers) at the start and at a later time (e.g., one week later)
was examined (not shown). It was found that, at the very
beginning of model integration (second integration cycle af-
ter a cold start), the differences between the two experiments
were apparent. This indicated that land surface process un-
certainties had been introduced into the ensemble system and
the interaction between land surface processes and the atmo-
sphere subsequently took place. Although the soil moisture
difference was small at the beginning, the difference grew
rapidly as the model integrated, indicating strong soil mois-
ture exchange among land surface processes and the atmo-
sphere compared with the control experiment. It is interest-
ing to note that large soil moisture differences did not nec-
essarily correspond to large soil temperature differences, and
vice-versa. This indicated that, although the soil moisture
and temperature interacted with the atmosphere above, the
uncertainties varied temporally and spatially for different el-
ements. Similar characteristics were found in all the other
soil levels. However, in the deeper soil layers, the change
in soil temperature or moisture decreased rapidly compared
with the levels above (Fig. 2 and 3); that is, the deeper down
in the soil, the less of a difference was obtained between the
perturbed and control runs. An explanation for this might
be the fact that deeper soil layers possess more stable ther-
modynamic and humid characteristics. It was noticed, for
instance, that uncertainties in both soil moisture and temper-
ature were large in high-altitude mountain areas, such as the
Tibetan Plateau and Iranian Plateau, which may have resulted
from fewer high quality surface observations, but neverthe-
less affected the model’s integration and forecasting ability.
To investigate the soil variation due to land surface perturba-
tion more thoroughly, the time series of soil spread across the
Northern Hemisphere during the experimental period were
examined. The ensemble spread was used to measure fore-
cast uncertainties, which was calculated by the deviation of
ensemble forecasts from their mean.

Figure 2 presents the time series of soil temperature
spread for the four-member rescaled perturbation, replace-
ment perturbation, and control experiments, at different soil
depths. Because there was no soil perturbation in the con-
trol test, the spread for the control was close to zero. It is
clear that the spread at the near-surface soil level reached a
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Fig. 2. Temporal evolution of soil temperature spread in the perturbation experiments at different soil depths: (a) 0–10
cm; (b) 10–40 cm; (c) 40–100 cm; (d) 100–200 cm (units: K).

Fig. 3. As in Fig. 2 but for soil moisture (units: %).
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steady state immediately, despite significant fluctuation [Fig.
2a, 0–10 cm, which reflects the range of probable soil tem-
perature uncertainties at this level; the calculation area was
the Eurasian continent (20◦–80◦N, 0◦–150◦E)]. By contrast,
the soil temperature spread at deeper layers (Figs. 2b–d) pre-
sented a rapid increase with time, meaning the uncertainties
of soil temperature at these levels did not even reach a satura-
tion value within the experimental period. This phenomenon
could be explained by the fact that the timescales at which
the land surface interacts and responds to atmospheric forc-
ing differ greatly with soil depth (Viterbo and Beljaars, 1995;
Beljaars et al., 2007). Studies indicate that the timescales
at which the atmosphere and land surface processes interact
range from instantaneous to seasonal (Beljaars et al., 2007).
Furthermore, Viterbo and Beljaars (1995) tried to deduce the
timescales associated with each soil layer by using the soil
heat budget function, and concluded that the timescales of in-
teraction among soil layers depend on the soil depth, the heat
capacity, and soil moisture; for any given layer, the interac-
tions with lower layers operate at longer timescales than inter-
actions with upper layers, and the timescales range from frac-
tions of a day to around 150 days. Therefore, the timescales
of interactions between the atmosphere and land surface pro-
cesses in our experiments were expected to differ from the
diurnal to seasonal scale, since there are four soil layers in
the land surface processes of the GEFS. At the top level, the
timescale of interactions between land surface processes and
the atmosphere was very short (not longer than one day), so
their interactions reached a balanced state very quickly. In
the latter stages of the experiment, there was a tendency for
the spread to decrease slightly compared with the earlier pe-
riod, and this phenomenon probably resulted from the im-
perfections of our experimental design: if the perturbations
had been devised more strategically, such as the non-cycling
surface breeding in Wang et al. (2010), the effect would prob-
ably have been more obvious. At the second soil level (10–40
cm), the spread grew steadily in the later stages of the exper-
iment, and for the third and last layer, the slopes were larger,
implying a longer timescale of interactions. The evolution

of spread for soil moisture was similar to that of soil tem-
perature, albeit there were some differences in the variation
range and slope (Fig. 3). Given the finding that the spread
of soil moisture and temperature continued to increase with
soil depth, to determine the overall effect of land surface pro-
cess perturbations on the predictability of the GEFS should
require a longer model integration time.

3.2. Effect of land surface perturbations on atmospheric
variables

It is known that land surface processes play an important
role in NWP: as the surface heats up during the day, sensible
energy is transferred to the atmosphere, moisture evaporates
from the soil or transpires from plants (latent heating), and
soil in the lower levels is heated. Changes in land-surface
properties have been shown to influence the heat and moisture
fluxes within the PBL, which influences convective available
potential energy and other measures of deep cumulus cloud
activity (Pan and Mahrt, 1987; Pielke, 2001; Sutton et al.,
2006). The effect of land surface processes in a numerical
prediction system is reflected explicitly and inexplicitly in
the boundary layer dynamic and thermodynamic equations;
for example, the friction term in the momentum equation, the
sensible and latent heating in the energy equation, and the
local water vapor budget in the moisture conservation equa-
tion. The soil moisture and temperature interact with the at-
mosphere above in the form of sensible heat flux and evapo-
transpiration (latent heat flux heat flux). The latent and sen-
sible heat flux within the PBL affect the development of con-
vection and precipitation—a mechanism that operates glob-
ally (Pielke, 2001). Therefore, discussing the distribution of
sensible and latent flux is key to understanding how land sur-
face processes affect the forecasting skill of tools such as the
GEFS.

Figure 4 shows the difference between the two perturbed
tests and control experiments (ensemble mean), and the
spread for each test within the Eurasian continent. A posi-
tive value in Fig. 4a means that the overall forecasted surface
latent heat flux in the perturbed run was larger than in the

Fig. 4. Time series of average surface latent heat flux (units: W m−2) for the (a) difference between the perturbed and
control experiments, and (b) spread for each test, within the Eurasian continent.
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control run, while a negative value indicates a lower over-
all latent heat exchange. It is clear that uncertainties in the
GEFS resulted in a comparatively larger surface latent heat
flux during the one-month experiment over the area; and in
view of the spread, the two perturbation tests were obviously
larger than the test without soil perturbation. Meanwhile, for
surface sensible heat flux, we found a reduction between the
control test and the two perturbations (Fig. 5). The positive
or negative value between the perturbation tests and the con-
trol run was not the point of our focus, but by combining
with the spread we were able to find that the perturbation of
land surface processes did indeed contribute to obvious vari-
ation in forecasted heat fluxes. Therefore, we can confidently
conclude that uncertainties in land surface processes tend to
change the exchanges of surface sensible and latent heat flux
in systems such as the GEFS, therefore affecting the develop-
ment of atmospheric processes.

To investigate the effects of land surface process perturba-
tions on day-to-day forecasting, the 5-day lead time forecast
with the initial date of 1 September was arbitrarily selected
(Fig. 6). It can be seen that all three of these groups of ensem-
ble means differed obviously from one another; for instance,
geopotential height and 2-m temperature. Furthermore, the
time series of average relative humidity in the replacement
perturbation, rescaled perturbation and control tests over the
area of focus were calculated (not shown), and the results also
indicated that uncertainties in land surface processes con-
tributed to quite different forecast results from day to day,
therefore affecting the performance of the ensemble fore-
casts. Because land surface uncertainties within the GEFS
result in a change in the surface energy budget, it follows
that partitioning of thermal energy between latent and sensi-
ble heat flux (Dr. Jun DU, NCEP, 2006, personal communi-
cation), and further alteration of PBL processes, convection,
radiation, and other processes in the free atmosphere, will
also take place. At the same time, these variations in free-
atmospheric processes will feed back to the land surface in
perturbation experiments, and thus the interactions between
land surface processes and the atmosphere cycles and induces
forecast differences between the perturbation and control ex-

periments.

4. Evaluation of predictability due to land sur-

face perturbation

For probabilistic forecasts, there are many existing verifi-
cation methods to help with judging the quality of a forecast
system. Some measures assess the reliability or resolution,
while others provide a combined measure of both. No single
verification measure provides complete information on the
quality of a product (Stanski et al., 1989). The resolution is
defined as a forecast system’s ability to distinguish, ahead of
time, different outcomes of the real atmosphere. Resolution,
as the inherent predictive value of a forecast system, is one of
two important forecast attributes most sought after by devel-
opers of forecast systems, could be only enhanced through
improving forecast system. Reliability, however, is equally
important in real-world applications (Toth et al., 2006). It
refers to the ability to provide unbiased probability estimates
for forecasts. To assess the effect of land surface processes
on the GEFS, various scores that evaluate the performance
of probability forecasts were calculated for the three experi-
ments.

4.1. Relative Operating Characteristic area
The Relative Operating Characteristic (ROC) curve is a

plot of the hit rate as a function of the false alarm rate of a
series of deterministic forecasts, obtained from the probabil-
ity distribution by considering several probability thresholds,
from p = 0% (event systematically forecasted) to p = 100%
(event never forecasted) (Atger, 1999). It measures the abil-
ity of the forecast to discriminate between events and non-
events, and indicates the characteristic attribute of resolution.
The area under the curve (the “ROC area”) is a useful sum-
mary measure of forecast skill, and for a perfect ensemble
prediction system, ROC area = 1 (Richardson, 2000). Fig-
ures 7a and b show the ROC area scores for the 1000 hPa
and 500 hPa geopotential heights, respectively. It can be seen
that, at the short forecast lead times (1–5 days), there was
no obvious difference among the three experiments; as the

Fig. 5. As in Fig. 4 but for sensible heat flux (units: W m−2).
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(a)

(b)

Fig. 6. A 5-day lead time forecast ensemble mean for the three
ensemble tests at 500 hPa (initial time is 1 September 2006): (a)
geopotential height (units: gpm); (b) 2-m temperature (units:
K).

forecast lead time increased, from day 4 to day 9, the ROC
area in the two perturbation experiments was slightly bet-
ter than in the control. As the lead time increased beyond
10 days, however, the scores of the rescaled and control ex-
periments were almost the same. From the low level (1000
hPa) to the mid-level (500 hPa), the effects seemed to grow
larger. This can be explained by the fact that soil moisture and
temperature uncertainties affect PBL and radiation processes,
among others, directly. As height increases, more complex

physics is involved, and thus the effects are enlarged. A lower
level of improvement in forecast skill between the perturba-
tion and control tests resides in the fact that there were too
few members (four members for each test, due to limitations
in computing resources); it is known that the skill of an en-
semble forecast generally increases with an increase in the
number of members (Langford and Hendon, 2011), More-
over, from the ROC area score, it seems that considering the
variation in land surface processes could slightly increase the
resolution of global prediction systems.

4.2. Continuous ranked probability score

The continuous ranked probability score (CRPS) mea-
sures the difference between the forecasted and observed cu-
mulative density functions of scalar variables (Candille et al.,
2007). It evaluates both the reliability and resolution; fur-
thermore, the CRP skill score (CRPSS) has an advantage of
being sensitive to a whole range of values of the parameter
of interest, that does not depend on predefined classes at the
same time. It evaluates the characteristics of both the resolu-
tion and reliability. Similar to the ROC area, the CRPSSs for
the perturbation experiments were slightly larger than for the
control run at most forecast lead times (beyond day 5, Fig.
8). Likewise, a tendency was found for a higher CRPSS at
higher levels (vertically) in the model, illustrating that pertur-
bation of soil moisture and soil temperature contribute to an
overall slight improvement of forecast skill in resolution and
reliability. However, the replacement test produced a lower
score than the other two at the lead times of 15 and 16 days,
indicating that perturbations were too large, in comparison
with the rescaled perturbation test.

4.3. Measurements of the ensemble mean
Due to the deficiency in the ensemble technique and the

limited number of ensemble members, almost all current
EPSs are under-dispersive, which remains as a great chal-

Fig. 7. ROC area for the rescaled perturbation (green), replacement perturbation (red) and control (black) experi-
ments for (a) 1000 hPa geopotential height and (b) 500 hPa geopotential height, averaged over the verification domain
(Eurasian continent) and over the verification period from 23 August to 24 September 2006 (E4s: control run; E4x:
replacement run; E4u: rescaled run).
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lenge in ensemble forecasts. For the ensemble verification
score, it shows that the ensemble spread (distance between
the ensemble mean and ensemble members) is less than the
ensemble RMSE (distance between the ensemble mean and
the analysis). Figure 9 compares the ensemble mean and
spread of the 500 hPa and 1000 hPa geopotential heights.
The results indicated that, unlike the slight improvement in
forecast skill in terms of resolution and reliability, the per-
turbation of surface variables in the GEFS contributes to a
noticeable reduction in forecast error, as well as an increase
in ensemble spread in an under-dispersive system.

Besides the scores mentioned above, other verification
methods were employed to evaluate the performance of the
probability forecasts, and the results were similar. All in
all, mostly positive results were obtained for the GEFS when
considering the uncertainties of land surface processes. This
is due to the fact that, unlike the direct perturbation of atmo-
spheric variables, it takes time for land surface process un-
certainties to play a role, through interactions between the at-
mosphere and the land surface, i.e., the characteristics of soil
are much more stable than those of air, and so there is a clear
time delay in the saturation of soil spread. Finally, due to the
limitations of computing resources, too few ensemble mem-
bers were used in the experiments (four members for each

group), which more than likely affected the results (Sutton et
al., 2006). Furthermore, a more wisely devised perturbation
scheme, more ensemble members, and a longer experiment
period are expected to improve the forecast skill.

5. Discussion and conclusions

Land surface processes have a profound impact on the
overlying atmosphere on all time scales, including the storm
scale, meso-scale, weather, sub-seasonal to seasonal, and cli-
mate scales. This study took into account the uncertainties in
land surface processes by adding a module into the NCEP’s
GEFS and testing the influence on its predictability. Three
experiments were conducted, and the preliminary results can
be summarized as follows:

(1) The variations of soil temperature and soil moisture in
the GEFS were examined to illustrate the uncertainties in land
surface processes. The spread of the soil states reflected the
timescales of interactions between the atmosphere and land
surface processes, ranging from fractions of a day to the sea-
sonal scale. The ensemble spread reached a steady state im-
mediately at the near-surface soil level; but with deeper soil
underneath the surface, the time it took for the spread to sat-
urate increased. Therefore, a successive integration period of

Fig. 8. As in Fig. 7 but for the CRPSS.

Fig. 9. As in Fig. 7 but for the evolution of spread (SP, dashed) and RMSE (RM, solid).
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more than 6 months is required in the GEFS to fully represent
the effects of land surface perturbation.

(2) Land surface process uncertainties resulted in large
sensible and latent heat flux changes in the perturbation ex-
periments compared to the control run, and the influences of
land surface processes propagated to the upper troposphere
via PBL processes, convection, and other activities. Locally,
or in terms of day-to-day forecasting, there were great differ-
ences between the perturbed and control experiments.

(3) To assess the effects of land surface process pertur-
bations on the GEFS, various scores, such as the ROC area,
CRPSS, ensemble mean forecast error and spread, were cal-
culated to evaluate the performance of the probability fore-
casts. The results indicated that the perturbation of surface
variables in the GEFS contributes to slight improvement in
forecast skill in terms of resolution and reliability, a notice-
able reduction in forecast error, as well as an increase in
ensemble spread in an under-dispersive system. The im-
provement is small at the surface, but the effect becomes in-
creasingly obvious with depth due to interactions or feedback
among surface processes and the free atmosphere. Consider-
ing the small number of ensemble members in the experi-
ments, we expect the land surface perturbations to potentially
have a greater impact in baroclinic zones, which is important
for increasing ensemble spread in under-dispersive systems.

(4) Two different perturbation schemes were designed in
this study. It seems that the rescaled experiment showed more
skill than the replacement experiment, indicating that it is
necessary to control the ranges of perturbation. Moreover,
a state-of-the-art land surface perturbation might help to fur-
ther improve the GEFS’ forecast skills. For both schemes, the
effects of interactions between land surface processes and the
atmosphere differed with variables (soil moisture, soil tem-
perature, geopotential height, temperature field, wind fields
etc.), due to the timescales and mechanisms of interactions
involved. Limited by computing resources, there were only
four members for each ensemble group, which would have
greatly affected the results. Therefore, this paper serves only
as a preliminary exploration in this field. More complex and
suitable methods need to be devised and applied to exam-
ine the effects of land surface process perturbations, such as
the ET method for land surface processes, the perturbation
of more variables (SST, sea-ice, near-surface temperatures,
humidity etc.), a longer testing period, and more ensemble
members.
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