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ABSTRACT

The potential predictability of surface-air temperature and precipitation over the United States was assessed
for a GCM forced by observed sea surface temperatures and an estimate of observed soil-moisture content. The
latter was obtained by substituting the GCM-simulated precipitation, which is used to drive the GCM’s land
surface component, with observed pentad-mean precipitation at each time step of the model’s integration. With
this substitution, the simulated soil moisture correlates well with an independent estimate of observed soil
moisture in all seasons over the entire U.S. continent. Significant enhancements for the predictability of surface-
air temperature and precipitation were found in boreal late spring and summer over the U.S. continent. Anomalous
pattern correlations of precipitation and surface-air temperature over the U.S. continent in the June–August
season averaged for the 1979–2000 period increased from 0.01 and 0.06 for the GCM simulations without
precipitation substitution to 0.23 and 0.31, respectively, for the simulations with precipitation substitution. The
results provide an estimate for the limits of potential predictability if soil-moisture variability is to be perfectly
predicted. However, this estimate may be model dependent and needs to be substantiated by other modeling
groups.

1. Introduction

It is well known that tropical sea surface temperature
(SST) anomalies have substantial influence on the cli-
mate variability over the North Pacific and North Amer-
ica in boreal winter through teleconnections (e.g., Wal-
lace and Gutzler 1981). Many authors (e.g., Kumar and
Hoerling 1998; Trenberth et al. 1998; Shukla et al. 2000)
have explored the potential predictability of the North
American winter climate simulated by atmospheric gen-
eral circulation models (GCMs) forced with observed
SSTs. During boreal summer, however, the influence of
tropical SSTs on midlatitude climate variability is weak
and is primarily limited to the zonal mean component
of the extratropical height field (Schubert et al. 2002).
Although a few studies have found that SST anomalies
outside of the Tropics may be of certain predictive value
(e.g., Ting and Wang 1997; Lau et al. 2004), a robust
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link between SST anomalies and the U.S. summertime
climate has yet to be established. The impact of SSTs
is often blurred due to local processes and feedbacks,
such as those associated with changes in low-level jet
streams and soil moisture content. The influence of soil
moisture on precipitation and surface temperature has
long been noticed and is drawing even wider attention
in recent years (e.g., Delworth and Manabe 1988; Atlas
et al. 1993; Wang and Kumar 1998; Fennessy and Shuk-
la 1999; Hong and Kalnay 2000; Koster et al. 2000;
Schlosser and Milly 2002; Koster and Suarez 2001,
2003; Kanamitsu et al. 2003; Mo 2003).

Soil-moisture content is primarily determined by
groundwater holding capacity, precipitation, runoff, and
evaporation (Delworth and Manabe 1988; Koster and
Suarez 2001). In turn, soil moisture affects surface-air
temperature and humidity by modifying the release of
latent and sensible heat fluxes, and consequently af-
fecting atmospheric circulation and precipitation. The
process involves many feedbacks and is so complicated
that often it is impossible to identify the cause and effect
from the analysis of observational records alone. To
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circumvent this problem, atmospheric GCMs have been
used by many authors to understand the process.

So far, there have been two major kinds of GCM
studies. The first kind treats soil moisture as a boundary
condition problem. Either model-generated or idealized
soil-moisture anomalies were specified and maintained
during model integrations to study the impact of soil-
moisture anomalies on the simulations of observed flood
and drought conditions (e.g., Atlas et al. 1993; Hong
and Kalnay 2000) or on the interannual variability of
model-generated precipitation and/or surface tempera-
ture (e.g., Koster and Suraez 1995; Koster et al. 2000;
Dirmeyer 2000). No feedback processes associated with
soil moisture were included since the prescribed soil
moisture does not respond to changes in atmospheric
conditions. The second kind treats soil moisture as an
initial value problem. These studies examined how ini-
tial soil-moisture anomalies, once initialized, affect the
predictability of precipitation and/or surface tempera-
ture. The feedbacks between soil moisture and the at-
mospheric conditions were included. Often, the pre-
dictability of soil moisture itself (or soil-moisture mem-
ory) was also investigated. Most of the studies relied
on idealized model-generated soil-moisture anomalies
(e.g., Wang and Kumar 1998; Schar et al. 1999; Schlos-
ser and Milly 2002). Attempts have also been made to
initialize the models with more realistic soil-moisture
anomalies, either by using soil-moisture analyses (Fen-
nessy and Shukla 1999; Kanamitsu et al. 2003) or by
performing spinup simulations for which observed at-
mospheric conditions were used to force the model’s
land surface component before formal predictions start
(Koster and Suraez 2003). These studies emphasized the
importance of initial soil-moisture anomalies. The de-
gree to which the initialization can enhance the pre-
dictability of summertime precipitation and temperature
is mixed, varying among models and with locations.

The potential predictability in association with ob-
served SST anomalies has been explored in-depth using
GCM results from Atmospheric Model Intercomparison
Project (AMIP)-type experiments (e.g., Kumar and
Hoerling 1998; Straus et al. 2003). A similar investi-
gation on the predictability in association with ‘‘ob-
served’’ soil-moisture anomalies has not been attempt-
ed, primarily because of the lack of global-scale long-
term observations of soil moisture. Various ongoing
Land Data Assimilation Systems (LDAS) are filling this
gap by running retrospective and near–real time LDAS
(e.g., Mitchell et al. 1999; Cosgrove et al. 2003). Sat-
ellite observations have also started to produce soil-
moisture estimates. However, there are inherent prob-
lems when independent soil-moisture observations or
analyses are used as initial or boundary conditions for
GCM experiments. A variety of land surface models are
now being used by different GCMs, and often they are
also different from those used in Land Data Assimilation
Systems. These differences cause incompatibility in soil
types, layers, and field capacity, and consequently lead

to different definitions of ‘‘dry’’ and ‘‘wet’’ conditions
in the models. For example, Fennessy et al. (2000) used
the soil-moisture analysis of Huang et al. (1996) as ini-
tial conditions to perform near–real time seasonal pre-
diction by the Center for Ocean–Land–Atmosphere
Studies GCM. They found several adjustments have to
be made with the soil-moisture data for compatibility.

In this study, we propose first a simple method to
generate GCM soil moisture that is fairly realistic. We
substitute the model-simulated precipitation with ob-
served precipitation during model integrations to force
the model’s land surface component. By doing so the
incompatibility issue is avoided, and the feedbacks be-
tween soil moisture and the atmospheric conditions are
also retained. Results show that the simulated soil mois-
ture matches well with the Huang et al. (1996) analysis
in all seasons. Then, the potential predictability of pre-
cipitation and surface-air temperature over the conti-
nental United States in boreal summer is explored using
a set of ensemble GCM simulations, which are forced
by observed SSTs and the almost ‘‘perfect’’ soil-mois-
ture content.

A brief outline of this paper is as follows. Section 2
describes the National Centers for Environmental Pre-
diction (NCEP) GCM and the observed SSTs and pre-
cipitation used to force the GCM. Given the fact that
observational precipitation analyses are often presented
as daily, pentad, or monthly means, a choice has to be
made of the kind of precipitation data to use. Following
a perfect model approach, different options are evalu-
ated in section 3. It is found that using pentad-mean
precipitation can reproduce well the land surface fea-
tures that the NCEP GCM simulates when no alteration
of precipitation is made. Section 4 compares the GCM-
simulated soil moisture with an observational analysis.
The potential predictability of U.S. summertime climate
is examined in section 5. The conclusions and discus-
sions are presented in section 6.

2. Model and data

The atmospheric GCM used in this study is the NCEP
seasonal forecast model. It has been described in detail
by Kanamitsu et al. (2002). In brief, the GCM has a
spectral triangular truncation at wavenumber 42, and
has 28 levels in the vertical direction. The horizontal
grid spacing is approximately 38 in latitude and longi-
tude. In the model, surface temperature is predicted and
governed by a surface energy budget equation. Surface
momentum and sensible and latent fluxes are parame-
terized using the Monin–Obukov similarity profile (Mi-
yakoda and Sirutis 1986). A two-layer soil model (Mahrt
and Pan 1984) is used to predict soil-moisture fraction,
soil temperature, and canopy water content. The top
layer extends from the surface to 10 cm, and the deep
layer extends from 10 to 200 cm. Vegetation type and
cover and soil type are taken from the Simple Biosphere
model climatology (Dorman and Sellers 1989). When
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FIG. 1. Daily, pentad, and monthly mean precipitation averaged
over the U.S. continent, derived from the Cntl run for 1979. Large
variations of daily and pentad precipitation are superimposed on the
monthly means.

rain falls, a portion proportional to the vegetation frac-
tion is intercepted by the leaves and converted into can-
opy water content. The canopy water then evaporates.
If the final canopy water content exceeds the canopy
water capacity, the excessive part drops to the ground.
Water on the ground is either absorbed by soil or be-
comes runoff depending upon the ground wetness and
soil types.

For all GCM experiments we present here, the model
was forced by the observed monthly mean SSTs for the
period from 1979 through 2000 (Smith et al. 1996). For
the experiments described in section 4 in which the
observed precipitation was inserted to replace model-
predicted precipitation, we used the Experimental Glob-
al Precipitation Climatology Project (GPCP) Pentad
Precipitation Analysis, created and maintained at NCEP
(P. Xie 2002, personal communication). This dataset was
defined by merging gauge and satellite observations and
has a resolution of 2.58 latitude 3 2.58 longitude. At
the time these experiments were carried out, this dataset
was the only one available that had a fine temporal
resolution, covered the globe, and extended back to
1979. More recently, Huffman et al. (2001) produced a
18 daily mean precipitation dataset. In section 3, in the
context of a perfect model approach, we demonstrate
that results drawn from this study are not biased because
of the use of the pentad-mean precipitation instead of
other types of precipitation with higher temporal reso-
lutions.

3. Choice of mean precipitation for substitution—
A perfect model assessment

Ideally, the best choice for GCM precipitation sub-
stitution is to have an observational precipitation dataset
whose temporal resolution matches the time step of the
model’s land surface physics. However, observational
precipitation analyses are often presented as daily, pen-
tad, or monthly means. Are the modeled soil-moisture
content and surface climate affected by the use of time-
averaged precipitation instead of the precipitation pro-
duced by the model at each time step? We assess this
impact from a set of different GCM experiments.

We first performed a 22-yr simulation for the 1979–
2000 period forced by observed SSTs, a standard AMIP-
type simulation. We refer to this simulation hereinafter
as Cntl. Daily mean precipitation was saved during the
Cntl run. Pentad and monthly means were subsequently
derived. Then, three more GCM experiments were per-
formed for the 1979–2000 period starting from the same
single initial condition and forced by the same SSTs,
except that for the land surface component of the GCM,
the saved daily, pentad, and monthly mean precipitation
were inserted into the GCM to replace the model-pre-
dicted precipitation (referred to as Daily, Pentad, and
Monthly experimental runs, respectively). To elaborate,
for instance, the Pentad run was carried out in such a
way that the pentad precipitation derived from the Cntl

run was divided equally and inserted into the soil-mois-
ture budget equation at each model physical step to
update canopy water content, runoff, and soil-moisture
fraction. The precipitation predicted by the model itself
was ignored. The insertion is made only if the model-
predicted precipitation is in liquid phase; that is to say,
snow is still predicted by the model itself. For illustra-
tion, the daily, pentad, and monthly precipitation av-
eraged over the U.S. continent for 1979 are plotted in
Fig. 1.

The focus of this study is on summertime surface
climate in monthly to seasonal time scales. To under-
stand to what extent the substitution of modeled pre-
cipitation with time-averaged precipitation replicates the
soil-moisture evolution, we compared a few land and
near-surface properties from the experimental runs (Dai-
ly, Pentad, and Monthly) with those from the control
run (Cntl).

Shown in Fig. 2 are the percent differences of the
top-layer (0–10 cm) soil volumetric wetness (cm) and
surface-air temperature (8C) in July averaged for the
1979–2000 period between the experimental runs and
the control run. Figure 3 shows local correlations for
the 22-yr period in July. For all three experimental runs,
the biases in soil-moisture content and surface-air tem-
perature are less than 10% everywhere over the U.S.
continent. Local correlations are generally larger than
0.9 for soil moisture and larger than 0.8 for surface-air
temperature. The results from the Pentad run are rather
close to the Daily run. Larger biases are found for the
Monthly run. For other months in the warm season, we
found similar results (not shown). For the cold season,
even though the simulated soil-moisture content from
the experimental runs still matches rather well with that
from the control run, surface-air temperature shows al-
most no correlation, indicating much stronger dynamical
control of the atmosphere on surface-air temperature in
winter than in summer.

These tests indicate that monthly mean statistics of
the modeled land and near-surface properties in summer
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FIG. 2. Percent differences of the GCM-simulated top-layer soil-moisture content in terms of (left)
volumetric wetness (cm) and (right) surface-air temperature (8C) between the experimental runs (Daily,
Pentad, and Monthly) and the control run (Cntl) in Jul, averaged for the 1979–2000 period.

have not been seriously altered because of the use of
time-averaged precipitation as forcing for the GCM land
surface component. In section 4, observed pentad-mean
precipitation will be used to force the GCM for our
investigation of the predictability of U.S. summer cli-
mate. Based on the comparisons presented in this section
we feel confident that our results are not biased because
of the choice of the pentad-mean precipitation.

4. ‘‘Perfect’’ soil moisture from precipitation
substitution

Starting from different atmospheric and land surface
initial conditions, a set of three GCM simulations were
performed for the 1979–2000 period. They were forced
by the observed monthly SSTs over the ocean and the
observed GPCP pentad-mean precipitation over land.
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FIG. 3. Local correlations of the (left) GCM-simulated top-layer soil-moisture content and (right) surface-
air temperature between the experimental runs (Daily, Pentad, and Monthly) and the control run (Cntl) in
Jul for the 1979–2000 period.

We refer this set of simulations as obsprain. For com-
parison, another set of three GCM simulations were per-
formed that are the same as the obsprain except that the
land surface component was forced by the model-pre-
dicted pentad-mean precipitation. We refer to this set of
simulations as gcmprain. The simulated soil-moisture
contents from the two sets of simulations were then
evaluated against observations to measure the improve-
ment in soil-moisture simulation by precipitation sub-

stitution. All calculations thereinafter are based on en-
semble means of the GCM simulations.

Currently, there are still no global and long-term ob-
servations, either on the ground or from satellites, of
soil-moisture content suitable for climate study. For val-
idation we rely on a model-based soil-moisture analysis
over the U.S. continent conducted routinely at NCEP,
which is based on the work of Huang et al. (1996). This
analysis is performed with a one-layer (0–160 cm) soil-
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FIG. 4. Differences in soil volumetric wetness (cm) in the top 160 cm of soil between the GCM simulations
and the Huang et al. (1996) analysis in JJA, averaged for the 1979–2000 period. (left) The gcmprain runs
in which the GCM was forced by its own pentad-mean precipitation, and (right) the obsprain runs in which
the GCM was forced by the observed GPCP pentad-mean precipitation.

moisture model that computes the water budget in the
soil and is forced by observed monthly temperature and
precipitation. Huang et al. (1996) showed that their
model analysis compared well with the soil-moisture
observations in Illinois in terms of climatology and in-
terannual variation. The analysis has been used widely
for climate diagnosis and prediction (e.g., Van den Dool
et al. 2003; Mo 2003).

The GCM consists of a two-layer soil model, with
the top layer extending down to 10 cm and the lower
layer from 10 to 200 cm. We derived the GCM soil-
moisture content for the top 160 cm by linear scaling.
Figure 4 compares the 1979–2000 climate means of soil-
moisture content in the top 160 cm over the U.S. con-
tinent in boreal summer months (June, July, and August,
respectively) between the GCM results and the Huang
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et al. (1996) analysis. Forced by the GCM’s own pentad-
mean precipitation (gcmprain runs), the model is too wet
over the northwestern states and too dry over the central
and southern states from Iowa down to Louisiana and
eastern Texas. These biases are greatly reduced in the
obsprain runs in which the observed GPCP precipitation
was assimilated. Over the central to southeastern states,
the model suffered from moderate wet biases in the
gcmprain runs and moderate dry biases in obsprain runs.

Figure 5 presents the local correlations of soil-mois-
ture content between model simulations and the Huang
et al. (1996) analysis for the 1979–2000 period. For the
gcmprain runs, the model shows no skill in soil-moisture
simulations, with a few exceptions over the southeastern
states, the northern part of the Great Plains, and the
southwestern states. For the runs forced by the observed
GPCP precipitation (obsprain runs), the correlations be-
tween the model-predicted soil moisture and the analysis
are generally larger than 0.6 over the entire continent.

The result indicates that even though soil-moisture
content is controlled by many parameters and physical
processes such as air and ground temperatures, runoff,
soil and vegetation types, precipitation and evaporation,
and the feedback among the processes (Delworth and
Manabe 1988; Koster and Suarez 2001), it is quite ef-
fective simply substituting the modeled precipitation
with observations if the goal is to obtain a better soil
condition to force the atmosphere. We next investigate
the potential predictability of U.S. surface climate sim-
ulated by the NCEP GCM, given the so-derived ‘‘per-
fect’’ soil-moisture content. This is analogous to the
traditional GCM investigation of predictability associ-
ated with prescribed SST anomalies (e.g., Kumar and
Hoerling 1998; Straus et al. 2003).

5. Potential predictability of U.S. surface climate
with ‘‘perfect’’ soil moisture

Here the measure of predictability is defined as the
contemporary correlations of monthly mean surface-air
temperature and precipitation between model simula-
tions and observations. For observations, we use month-
ly mean precipitation derived from the GPCP daily pre-
cipitation (Huffman et al. 2001) and monthly mean sur-
face-air temperature from the global network of surface
observations, the Climate Anomaly Monitoring System
(CAMS), maintained at NCEP (Ropelewski et al. 1986).
Figure 6 presents the correlation maps of monthly mean
surface-air temperature over the U.S. continent between
the CAMS observation and the two sets of GCM ex-
periments, gcmprain and obsprain, respectively, in the
three boreal summer months for the 1979–2000 period.
Correlation maps for precipitation are presented in Fig.
7. If we regard correlations larger than 0.4 as skillful
(at about the 94% significance level for a Student’s t
test), the GCM has skill in predicting the surface-air
temperature over only a few states when forced by the
model’s own precipitation (Figs. 6a–c), such as those

over Idaho in June and July and over Georgia and Al-
abama in July. When forced by the observed GPCP
precipitation, the model’s prediction skill is enhanced
in general over many states (Figs. 6d–f). The areas with
the biggest improvement are found over Montana, the
Great Plains, the Mississippi Valley, Texas, and New
Mexico.

For precipitation (Fig. 7), when the GCM’s land sur-
face component is forced by the model-predicted pre-
cipitation, the GCM has some prediction skill in the
northwest in June and July and in the southeast in July.
Over many regions, the correlations are negative (Figs.
7a–c). When forced by the observed GPCP precipita-
tion, the skills are improved over the entire U.S. con-
tinent, although in June and July the model became less
skillful over a few states in the northwest.

The prediction skill described here is the potential
predictability of the NCEP GCM, in the sense that per-
fect boundary conditions of SSTs and soil-moisture con-
tent were used to force the model. Given the chaotic
feature of the atmospheric circulation, which is con-
strained by the specification of soil moisture only to a
certain extent, the prediction skill is fundamentally lim-
ited. With the foreknowledge of soil moisture in addition
to SSTs, the enhancement in the predictions of precip-
itation and temperature is not uniform in space and time.
Koster et al. (2000) demonstrated that for precipitation
the enhancement can be detected only in the transition
zones between dry and humid climates, where evapo-
ration responds strongly to soil-moisture changes and
the variation in evaporation itself is also large enough
to affect the overlying atmosphere. They performed two
sets of GCM ensemble experiments, one with interactive
land surface processes and the other with prescribed
interannually varying evaporation efficiency (the ratio
of evaporation to potential evaporation). The evapora-
tion efficiency prescribed in the latter was generated by
a single randomly chosen member of the former. In this
perfect model approach they found (see their Fig. 13)
the enhancement in the potential predictability of June–
July–August (JJA) precipitation over the United States
was measurable only over the northwestern to central
southern states and over the southeastern states. Our
results based on monthly mean analysis show no such
definitive geographical preference in the enhancement
of potential predictability of precipitation from month
to month (Fig. 7). In June, the enhancement is found in
the eastern and southern states. In July, the greatest
enhancement is found in the northwestern states. In Au-
gust, the enhancement occurred in the southeastern and
western states. The disagreement between the present
study and Koster et al. (2000) may arise from the dif-
ferences in experimental design and GCM formulation.
A small ensemble size of three in the present analysis
may also contribute to the large variations in space and
time.

To see the seasonal dependence of the model’s pre-
diction skill, we computed the mean correlations shown
in Figs. 5–7 over the entire U.S. continent (278–508N,
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FIG. 5. Anomalous correlations of soil-moisture content in the top 160 cm between the GCM simulations
and the Huang et al. (1996) analysis in JJA, for the 1979–2000 period. (left) The gcmprain runs, and
(right) the obsprain runs.

688–1308W) and for all 12 months. Presented in Fig. 8
are the spatial mean correlations for soil moisture, sur-
face-air temperature, and precipitation, respectively.
The model’s simulation skill in soil moisture is greatly
enhanced in all months when forced by the observed
precipitation. The correlations for soil moisture are
raised from below 0.2 for the gcmprain runs to about
0.6 for the obsprain in all months. For precipitation and
surface-air temperature, better simulation skills are

found only in late spring and summer months. The cor-
relations are raised by about 0.1 for precipitation and
by up to 0.3 for surface-air temperature. In winter and
early spring, snow cover and atmospheric dynamics play
more important a role than soil moisture in controlling
the land surface processes. In the present study, snowfall
was simulated by the GCM without substitution from
observations.

We computed further the pattern correlations over the
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FIG. 6. Local correlations of surface-air temperature between the GCM simulations and the CAMS
observations in JJA, averaged for the 1979–2000 period. (left) The gcmprain runs, and (right) the obsprain
runs.

U.S. continent for June–August averaged anomalies of
soil moisture, precipitation, and surface-air temperature
between model simulations and the corresponding ob-
servations for the years from 1979 through 2000. For
the traditional AMIP-type simulations (gcmprains, solid
bars in Fig. 9), the NCEP GCM has some skill in sim-
ulating soil moisture in most of the years. The skill for
surface-air temperature is appreciable for some years,
but is very low when averaged over all the years. For

precipitation, there is basically no skill. For the AMIP
simulations with precipitation substitution (obsprains,
gray bars in Fig. 9), the anomalous pattern correlations
for the three variables are much higher and are positive
for all years. Consistent with the mean temporal cor-
relations shown in Fig. 8, the most significant improve-
ment is found for soil moisture. The simulations for
precipitation and surface-air temperature are also im-
proved considerably. However, the greatest improve-
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FIG. 7. Local correlations of precipitation between the GCM simulations and the GPCP observations in
JJA, averaged for the 1979–2000 period. (left) The gcmprain runs, and (right) the obsprain runs.

ment in soil moisture (e.g., 1988) did not always trans-
form into the best prediction skill of precipitation and
surface-air temperature. On the contrary, in certain years
such as 1996 and 1997 a small improvement in the
simulation of soil moisture transformed into a large in-
crement of the prediction skill for precipitation. This
indicates that in addition to soil moisture the conditions
of large-scale circulation and SSTs are also important
factors that determine the overall prediction skill of pre-
cipitation and surface-air temperature.

6. Conclusions and discussion

It is still a big challenge for current atmospheric
GCMs to simulate accurately atmospheric precipitation
and hence the soil-moisture content. Previous studies
(e.g., Fennessy and Shukla 1999; Kanamitsu et al. 2003;
Koster and Suarez 2003) have demonstrated that GCMs
initialized with realistic soil-moisture content can im-
prove the prediction skill of U.S. summer climate over
certain regions. The potential predictability associated
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FIG. 8. Mean correlations between prediction and observations av-
eraged over the entire U.S. continent, for (a) soil moisture, (b) pre-
cipitation, and (c) surface-air temperature, as shown in Figs. 5–7
except for all months. Dotted lines are for the correlations between
the gcmprain runs and observations, and bold lines are for those
between the obsprain runs and observations.

with observed soil moisture as a boundary forcing in-
stead of an initial value problem has not been explored
because of the scarcity of soil-moisture observations.

In this study, the potential predictability of precipi-
tation and surface-air temperature over the U.S. conti-
nent in boreal summer is estimated using the NCEP
operational seasonal forecast model with precipitation
substitution over the land and with the observed SSTs
as boundary forcing over the oceans. The observed
GPCP pentad-mean precipitation was used during model
integrations to replace the model-predicted precipitation
as input to the land surface component of the GCM.
Soil-moisture content simulated by the GCM with this
simple precipitation substitution match well with the
Huang et al. (1996) soil moisture analysis over the U.S.
continent in all seasons in terms of climate mean, and
almost ‘‘perfectly’’ well in terms of temporal and anom-
alous pattern correlations. The potential prediction skill
of precipitation and surface-air temperature are also
greatly improved in late spring and summer months over
many states in the continent. Averaged for all years, the
anomalous pattern correlations (Fig. 9) for precipitation
and surface-air temperature in JJA are 0.01 and 0.06,
for the runs without precipitation substitution, and are
raised to 0.23 and 0.31, respectively, for the runs with

precipitation substitution. This indicates that even
though the potential predictability of U.S. summer cli-
mate associated with SST anomalies is low, better pre-
diction skill can still be achieved with improved mod-
eling of soil-moisture content.

Now the question is how to improve the simulation
of soil moisture in GCMs. One way is to initialize the
GCM with realistic soil-moisture content (e.g., Fennessy
and Shukla 1999; Schlosser and Milly 2002; Kanamitsu
et al. 2003; Koster and Suarez 2003). But the persistence
or memory of soil-moisture anomalies is usually small
in spring and summer over the U.S. continent (Wang
and Kumar 1998; Schlosser and Milly 2002). Schlosser
and Milly found for the Geophysical Fluid Dynamics
Laboratory climate model the predictability time scale
of soil moisture measured as e-folding time is about 2
weeks or less in midlatitudes during summer. Seasonal
prediction skill of U.S. summer climate with soil-mois-
ture anomalies treated as an initial value problem is
limited because of the short memory of soil moisture
in summer and the inability of current GCMs to simulate
precipitation accurately. Results from previous studies
showed that the degree to which the initialization can
enhance the predictability of summertime precipitation
and temperature is limited and mixed, varying among
models and with locations.

In this study we treat soil moisture as a boundary
value problem and demonstrate the appreciable predic-
tion skill of U.S. summer climate. Similar studies can
be carried out using soil moisture from Land Data As-
similation Systems (e.g., Mitchell et al. 1999; Cosgrove
et al. 2003) to better understand the potential predict-
ability of U.S. summer climate for other GCMs. How-
ever, this approach is not practical for operational fore-
casts because we do not know soil moisture or precip-
itation beforehand. On the other hand, given the strong
dependence of soil moisture on precipitation as found
in this study, it might be helpful to apply bias correc-
tions, in terms of not only mean but also spatial patterns,
on GCM-predicted precipitation during real-time sea-
sonal forecasts based on antecedent statistical relations
between model-predicted precipitation and observa-
tions. The reduction in precipitation bias might lead to
improved simulation of soil moisture, and possibly bet-
ter prediction skill of surface-air temperature and, in
turn, precipitation itself. This kind of model-output-sta-
tistics (MOS) adjustment has been applied to, for in-
stance, surface winds, for the dynamical forecast of trop-
ical SSTs, and proved to be effective in improving the
forecast skill of SSTs (Ji et al. 1994). A proper soil-
moisture initialization combined with precipitation
MOS correction might further enhance the seasonal
forecast skill of U.S. summer climate.

Finally, we note that our analysis only provides an
estimate for the potential predictability related to the
interannual variability of soil-moisture anomalies. Such
estimates can easily be biased by the GCM character-
istics and remain to be substantiated by other modeling
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FIG. 9. Pattern correlations of JJA mean anomalies for (a) soil moisture, (b) precipitation,
and (c) surface-air temperature over the U.S. continent from 1979 through 2000 between the
NCEP GCM simulations and the observations as described in the text. Black bars are for the
gcmprain runs for which precipitation assimilation was not applied. Gray bars are for the obsprain
runs for which the observed GPCP pentad-mean precipitation was used to force the land surface
component of the GCM.

systems. Another factor that might have influenced our
estimates for the potential predictability is the small
ensemble size of three used in this study. As was shown
by Kumar and Hoerling (2000), the expected level of
skill depends on the ensemble size. Given the fact that
the expected level of skill progressively increases with
increasing ensemble size, potential predictability esti-
mates based on larger ensembles may be slightly higher
and more stable in space and time than the ones obtained
in the present analysis.
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