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Abstract 23 

In 2006, the statistical post-processing of the National Centers for Environmental 24 

Prediction (NCEP) Global Ensemble Forecast System (GEFS) and North American Ensemble 25 

Forecast System (NAEFS) was implemented to enhance probabilistic guidance. Anomaly 26 

Forecast (ANF) is one of the NAEFS products, generated from bias-corrected ensemble forecasts 27 

and reanalysis climatology. The Extreme Forecast Index (EFI), based on a raw ensemble forecast 28 

and model-based climatology, is another way to build an extreme weather forecast.  29 

In this work, the ANF and EFI algorithms are applied to extreme cold temperature and 30 

extreme precipitation forecasts during the winter of 2013-2014. A highly-correlated relationship 31 

between the ANF and EFI allows the determination of two sets of thresholds to identify extreme 32 

cold and extreme precipitation events for the two algorithms. An EFI of -0.78 (0.687) is 33 

approximately equivalent to a -2σ (0.95) ANF for the extreme cold event (extreme precipitation) 34 

forecast. 35 

The performances of the two algorithms in forecasting extreme cold events are verified 36 

against analysis for different model versions, reference climatology, and forecasts. The 37 

verification results during the winter of 2013-2014 indicate the ANF forecasts more extreme cold 38 

events with a slightly higher skill than the EFI. The bias-corrected forecast performs much better 39 

than the raw forecast. The current upgrade of the GEFS has a beneficial effect on the extreme 40 

cold weather forecast. Using the NCEP Climate Forecast System Reanalysis and Reforecast 41 

(CFSRR) as a climate reference gives a slightly better score than the 40-year reanalysis. The 42 

verification methodology is also extended to an extreme precipitation case, showing a broad 43 

potential use in the future. 44 

 45 
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1. Introduction 46 

An extreme weather event is unusual, unexpected, or rare weather. It could be defined 47 

from either a climatological base, forecast base, or a user specification. In general, it results in 48 

the loss of lives, property, equipment, etc. For example, the special report of the  49 

Intergovernmental Panel on Climate Change (IPCC) (2011) shows the annual losses from 50 

weather- and climate-related disasters since 1980 has ranged from a few US$ billion to more 51 

than 200 billion. Therefore, developing accurate forecast guidance and products to warn users 52 

about weather related risks has an important impact on the social economy. A good guidance 53 

product would allow users make early decisions and improve protection.  54 

A number of forecast methods have been developed and applied to identifying extreme 55 

weather events at various world forecast centers (Zhu and Cui 2007; Lalaurette 2003; Zsótér 56 

2006; Dutra et al. 2013; and Hamill et al. 2013). The concept of the Extreme Forecast Index 57 

(EFI), originally introduced by Lalaurette, (2003), is a measure of the difference between a 58 

forecast probabilistic distribution and model climate distribution. To increase the sensitivity of 59 

forecasts of extreme events, this index was further adapted in 2006 (Zsótér) by adding more 60 

weight to the tails of probability distributions. This index has been applied to extreme 61 

temperature, wind, and precipitation forecasts at the European Centre for Medium-Range 62 

Weather Forecasts (ECMWF), Canadian Meteorological Center (CMC), and the Earth System 63 

Research Laboratory (ESRL) of the National and Oceanic and Atmospheric administration 64 

(NOAA). 65 

Anomaly Forecast (ANF) is a more natural method to forecast extreme weather events. It 66 

measures forecast distribution departure from the climatological distribution. The method has 67 

been widely applied to forecasts of extreme heat waves, winter storms, etc. (Grumm 2001; 68 
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Graham and Grumm 2010). ANF was implemented as a forecast product at NOAA’s National 69 

Weather Service (NWS) in December 2007 (Zhu and Cui 2007). Based on the NCEP/NCAR 40-70 

year reanalysis, a daily climatological distribution (probability distribution function or PDF) has 71 

been created for 19 atmospheric variables such as height, temperature, winds, etc. ANF products 72 

have been generated from a bias corrected ensemble forecast (or probabilistic forecast). The 73 

products provide 1) ensemble mean as a percentile of the climatological distribution and 2) each 74 

ensemble member as a percentile of the climatological distribution. Based on these products, 75 

users could build various ANFs, such as greater than 1-sigma, 2-sigma, and 3-sigma standard 76 

deviations ANFs for various meteorological elements. Furthermore, by comparing the forecast 77 

PDF to climatological PDF, the users could easily identify an extreme weather event. 78 

In this paper, we develop a verification methodology to compare and evaluate the 79 

extreme weather forecast products from the ANF and EFI. After explaining the verification 80 

metrics, we evaluate products from different model versions (or model upgrade), different 81 

references, and products based on a raw forecast and bias corrected forecast. We first introduce 82 

the model and dataset in Section 2 and then highlight the two extreme weather forecast methods 83 

in Section 3. We also develop and apply a verification methodology to evaluate extreme cold 84 

weather forecasts and extreme precipitation forecasts in Section 4. The summary will be given in 85 

Section 5. 86 

 87 

2. Model and data sets 88 

             In this study, Global Ensemble Forecast System (GEFS) version 10 (v10) (Zhu et al. 89 

2012) and v11 (Zhou et al. 2016) forecasts are used to calculate the ANF and EFI. The outputs 90 

include raw and bias-corrected ensemble forecasts (Cui et al. 2012). The model climatology and 91 
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analysis (or observation) climatology serve as the reference climatology for the raw and bias-92 

corrected forecasts, respectively.  For the raw forecast, GEFS v11 is tested. The model 93 

climatology is calculated using an 18-year control only reforecast dataset. 94 

The GEFS v10 was implemented on February 14, 2012 at NCEP. It consists of 21 95 

members (one control member and 20 perturbed members) and is run 4 times daily (0000, 0600, 96 

1200, and 1800 UTC). In this study, we use only the 0000 UTC cycle forecasts. All members use 97 

an identical set of physical parameterizations (Zhu et al. 2007). The model is run at a horizontal 98 

resolution of T254 (~55 km) for the first 8 days and T190 (~70 km) for the next 8 days, with 42 99 

hybrid vertical levels. The hybrid GSI/EnKF analysis (Kleist and Ide 2015) is used as the initial 100 

condition. The initial perturbations are created with the Bred Vector–Ensemble Transform with 101 

Rescaling (BV-ETR, Wei et al. 2008) technique. Model uncertainty is estimated using the 102 

stochastic total tendency perturbations (STTP) method (Hou et al. 2008). For the bias-corrected 103 

dataset, the model bias was removed using a decaying averaging post-processing technique (Cui 104 

et al. 2012).  105 

There are three major changes  from the v10 to v11. First, in the v11, Euler’s integration 106 

method is replaced by the Semi-Lagrangian method in order to save computing time (Sela 2010). 107 

Second, the Ensemble Kalman Filter (EnKF) 6-h forecast is used as the basis of ensemble initial 108 

perturbation instead of BV-ETR generation. The details of the EnKF technique can be found in 109 

references by Whitaker and Hamill, 2012; Whitaker et al. 2008; Wang et al. 2013; and Kleist and 110 

Ide 2015. Third, the horizontal resolution was increased to 34 km (T574) and 55 km (T384) for 111 

the first and next 8 days, respectively. The number of vertical levels was increased to 64 levels.  112 

The 18-year (1995-2012) control-only v11 reforecast was run at the 0000 UTC cycle 113 

every other day. The reforecast dataset was interpolated bilinearly to 1°x1° latitude/longitude 114 
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grids from the native resolutions. The model native resolutions are about 34km and 55 km at 115 

mid-latitudes for the first and last 8 days, respectively. From the 1°x1° dataset, the model 116 

climatology for each day and each grid point was generated. In calculating the climatology, we 117 

also include 8 nearby points and use a time window of 5 days centered on the day being 118 

considered, leading to a total sample size of 243 data (9 years x 3 day/year x 9 points) for each 119 

gridpoint.  120 

The analysis climatology of 2-m temperature includes NCEP/NCAR 40-year reanalysis 121 

data (1959-1998) (Kalnay et al. 1996) and NCEP Climate Forecast System Reanalysis and 122 

Reforecast (CFSRR) 30-year reanalysis data (1979-2008) (Saha et al. 2010). The CFSRR 123 

climatology has been generated from the latest numerical weather prediction (NWP) model and 124 

assimilation system. Therefore, its quality has been much improved through various 125 

enhancements, such as improved quality of observations, a state-of-art model and assimilation 126 

system, and much higher spatial resolution. It has been pointed out that for the near-surface 127 

temperature the CFSRR produces a much finer structure than the NCEP/NCAR reanalysis 128 

(Personal communication with Bo Yang). 129 

A climatological distribution could be presented in terms of the climatological mean and 130 

standard deviation if a variable has a (quasi-) normal distribution. For the two sets of reanalysis, 131 

the first four Fourier modes (higher smoothing) have been used to generate daily climatological 132 

means to include annual, semi-annual, and seasonal cycles. Climatological standard deviations 133 

are linearly interpolated from monthly to daily means. For the NCEP/NCAR 40-year reanalysis, 134 

the best analysis resolution is 2.5° x 2.5° globally. We have to interpolate the data to 1.0° x 1.0° 135 

to match the forecast resolution. The original resolution of the CFSRR is 1.0° x 1.0° resolution. 136 



7 
 

The analysis climatology of precipitation was calculated based on Climatology-137 

Calibrated Precipitation Analysis (CCPA) (Hou et al. 2014) over the CONUS. A gamma 138 

distribution was used to fit precipitation distribution for each day of the year and each 1x1 grid 139 

point. The distribution parameters were determined via L-moment method (Hosking 1990; 140 

Hosking and Wallis 1997). The details on the generation of climatology can be found in the 141 

website 142 

(http://www.emc.ncep.noaa.gov/gmb/yluo/AMS_CCPA_Climatology%20[Compatibility%20Mo143 

de].pdf, updated January 2013). 144 

   145 

3. Forecast product generation methodology 146 

a) ANF 147 

ANF is defined as the difference between ensemble forecast (Fen(p)) and the expected 148 

value of climate distribution (C), 149 

                 ANF = Fen(p) – C                                                                                          (1) 150 

 In this work, we specifically calculate the ANF for the ensemble mean and the 50
th

 151 

percentile for 2-m temperature and precipitation, respectively. For 2-meter temperature, we 152 

calculate the value of ANF divided by one climatological standard deviation, so called 153 

standardized anomaly in Grumm (2001). For 24-hr accumulated precipitation, we find the 154 

location (or value) where the 50
th

 percentile (or median) of the ensemble forecast lies on the 155 

climatological distribution. The climatological distribution for the 2-m temperature and 156 

precipitation are assumed as normal distribution C=N(x, μ, σ
2
) and Gamma distribution C=Γ(x, k, 157 

ɵ), respectively. Previous work (Hou et al. 2014) demonstrated that a gamma distribution can 158 

well simulate the distribution of preciptation over North Amrica. The x, μ, σ
2
, k, and ɵ represent 159 

http://www.emc.ncep.noaa.gov/gmb/yluo/AMS_CCPA_Climatology%20%5bCompatibility%20Mode%5d.pdf
http://www.emc.ncep.noaa.gov/gmb/yluo/AMS_CCPA_Climatology%20%5bCompatibility%20Mode%5d.pdf
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location, mean, variance, shape factor, and scale parameter for the corresponding distributions, 160 

respectively. 161 

b) Extreme Forecast Index (EFI) 162 

For any given variable, the EFI (Lalaurette 2003; Zsoter 2006) may be expressed as 163 

                                                                                                                                              (2)  164 

Where p is the proportion of ranked climate record and Ff (p) is a function denoting the 165 

proportion of ensemble members lying below the p quantile of the climate record. The values of 166 

EFI are between -1and 1.  If the ensemble member probability distribution agrees with the 167 

climate probability distribution, then EFI = 0. In special cases where the values of all ensemble 168 

member forecasts are above the absolute maximum in the model climate, the EFI = +1; if all 169 

forecast values are below the absolute minimum in the model climate, the EFI = -1. The equation 170 

is solved numerically with an increment of p equal to 0.01.  171 

4. Verification 172 

4.1 Methodology 173 

Although various products of extreme weather forecasts have been generated in real time 174 

and the applications are widely used in many areas, the verification of these products has been a 175 

challenge. To our knowledge, the verification methodology is mainly based on scatter-plots of 176 

analysis anomalies and EFI, hit rates, false alarm rate, and ROC (relative operational 177 

characteristics) area (Toth et. al. 2003; Petroliagis and Pinson 2012; Matsueda and Takaya 2013). 178 

An extreme event is often defined as occurring when verifying analysis is in the tail(s) of the 179 

climatological distribution. In this study, we define a threshold of 5th (or -2σ for a normal 180 

distribution) and the 95th climatological percentile for extreme cold and extreme precipitation 181 


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events (high-end only), respectively. The corresponding thresholds are estimated from the 30-182 

year CFSRR climatological data (Saha et al. 2010) and Climatology Calibrated Precipitation 183 

Analysis (CCPA) (Hou et al. 2014), respectively.  184 

Similarly, a forecast extreme event is also assessed as a yes if the forecast value is above 185 

or below an appropriate threshold value. We use the same threshold as the analysis does to 186 

determine an extreme event for the ANF method. The EFI is an integrated measure of the 187 

difference between a forecast and its climatology. How to compare these two measures? What 188 

EFI value is equivalent (or close) to a specific anomaly? We would like to address this before 189 

verification.  190 

Figure 1 shows the comparisons of ensemble mean 96-h ANF and EFI for 2-m 191 

temperature on March 01, 2015 over North America. The ANF and EFI were calculated using 192 

raw forecasts and model climatology. The corresponding best-fit equation and correlation 193 

coefficient are also shown. There is a highly correlated relationship between the two forecasts. 194 

We found that a relationship between these two measures could be fitted from the 5th order 195 

polynomial function through this sample data set. According to the fitting equation, an EFI value 196 

equal to -0.78 is approximately equivalent to a -2σ ANF median (50%) value. This relationship 197 

provides an equivalent threshold value for identifying extreme events from the two algorithms 198 

and consequently allows corresponding inter-comparisons.  199 

A very similar technique was used to find the two corresponding thresholds for extreme 200 

precipitation events. Figure 2 displays a comparison of 72-96 h precipitation ANF and EFI for 201 

Jan. 06, 2014 over North America. Similar to the 2-m temperature, ANF and EFI are highly 202 

correlated and a 5th order polynomial also best fits the dataset. However, instead of using σ as 203 

the ANF unit, here we use percentiles to express precipitation ANF since a normal distribution 204 
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can not represent the asymmetric character of precipitation. The thresholds for ANF and EFI are 205 

taken as 0.95 and 0.685, respectively.          206 

Using these criteria, for each grid point over North America with a coincident model 207 

forecast and verifying analysis, one set of yes/no observations for the extreme cold events were 208 

assessed. Table 1 incorporates the model and observation into a 2 by 2 contingency table 209 

associated with dichotomous forecasts. The quality of the extreme cold event forecast was 210 

evaluated based on signal detection theory (Mason, 1982). The statistical scores Hit Rate (HR), 211 

False Alarm Rate (FAR), Frequency Bias (FBI), and Equivalent Threat Scores (ETS) (Schaefer 212 

1990) are defined as:                  213 

               HR = A/(A + B)                                                                                                     (3) 214 

               FAR = C/(C + D)                                                                                                   (4) 215 

               FBI = (A + B)/(A + C) – 1                                                                                     (5) 216 

               ETS = (A – R(h))/(A + B + C – R(h))                                                                   (6) 217 

Where,   218 

              R(h) = (AD – BC)/(A + B + C + D)                                                                       (7) 219 

A perfect forecast is defined by HR=1, FAR=0, FBI=0, and ETS=1. These scores are applied 220 

widely in weather forecast evaluations (Swets 1988; Doswell et al. 1990; Zhu 2007). 221 

For ease of interpreting the statistics, Roebber (2009) developed a performance diagram 222 

that shows POD (or HR), success ratio (SR), bias, and Critical Success Index (CSI) in a single 223 

diagram. Here CSI and SR are defined as: 224 

CSI = A / (A + B + C)                                                                                              (8) 225 

SR = A / (A+C)                                                                                                        (9) 226 
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In Section 4.2, we also use a performance diagram to display the verification results for extreme 227 

cold events. 228 

 229 

4.2 Verification of extreme cold event forecasts 230 

          Using the verification methodology developed in Section 4.1, we compare the 231 

performance of the ANF and EFI products in forecasting extreme cold events for different model 232 

versions, references, and forecasts. We also examine how using different analysis climatology 233 

(NCEP/NCAR 40-year reanalysis vs 30-year CFSRR) impacts the verification. 234 

For 2-m temperature, verification is performed over North America for 11 extreme-cold 235 

days (events) that occurred during the winter of 2013-2014. This winter was considered to be 236 

colder and snowier than normal as noted in Geert et al., (2015) and the National Weather Service 237 

seasonal review (http://www.weather.gov/cle/climate_winter_2013-14_Review). We focus on 238 

the two winter cold waves, which occurred for the periods of December 6-10, 2013 and 239 

December 29, 2013 – January 7, 2014, respectively. Both cold waves caused extreme cold 240 

temperatures and broke daily precipitation and snowfall records across a considerable area of 241 

North America. 242 

 243 

a. Verification of ANF and EFI products 244 

Figure 3 shows verification of the EFI (Fig.3b) and ANF (Fig.3c) products against 245 

observations (Fig.3a) over North America for the GEFS v11 raw forecasts for 0000 UTC on 5 246 

March 2015. The four corresponding statistical scores are also shown at the bottom of the figure. 247 

Both EFI and ANF reproduce the observed cold anomaly pattern over the central United States. 248 

The HR (0.81) and ETS (0.6) values for the EFI are slightly higher than those for the ANF (HR 249 
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(0.8) and ETS (0.58)). The EFI predicts more extreme cold events than the ANF based on the 250 

FBI comparison. This may explain why EFI has a slightly higher HR and ETS. There are very 251 

similar FAR values (~0.03) for both methods. The very low FAR value mainly results from the 252 

combination of a large domain and a small area occupied by the extreme cold event. In addition, 253 

the model accurately identifying the extreme cold area is another reason for the low FAR.   254 

b. Verification of raw and bias-corrected forecast products 255 

 The verification results for the EFI products from the v11 raw and bias-corrected 256 

forecasts are displayed in Fig.4. The forecasts are initiated at 0000 UTC 2 Jan. 2014. Both the 257 

raw and bias-corrected forecasts predict extreme cold weather over Canada. However, there is 258 

also some difference between the two sets of forecasts. The bias-corrected forecast predicts 259 

observed extreme weather over Mexico, which is completely missed by the raw forecast. Based 260 

on the verification scores, the bias-corrected forecast performs much better than the raw forecasts 261 

for this particular case. The HR and ETS reach 0.76 and 0.6, respectively, for the bias-corrected 262 

forecast, which is much higher than in the raw forecast (0.53 and 0.40). The number of extreme 263 

cold events from the bias-corrected forecast is very similar to the observed number, which is 264 

approximately 20% higher than the raw forecast. The FAR values, again, are very low for both 265 

cases. The verification with a larger sample size (11 cases) for both methods is displayed in Fig. 266 

5.  It can be seen that increasing the sample size does not change the conclusions. The relative 267 

performance of raw and bias-corrected forecasts in the ANF is also very similar to the EFI. Both 268 

methods demonstrate much better performance for the bias-corrected than the raw forecast.  269 

 Figure 6 is the performance diagram for the above cases. A perfect forecast should have 270 

all 4 measures (HR, SR, bias, and CSI) equal to 1. In other words, a good forecast is closer to the 271 

upper right corner of the diagram. Obviously, the dots for the bias-corrected forecasts are more 272 
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concentrated in the upper right than the raw forecasts. Overall, the bias-corrected ANF for entire 273 

dataset marked by the green circles is closest to the bias=1 (bias free) line.   274 

One possible explanation of the lower scores for the raw forecast is that the control-only 275 

reforecast climatology may not fully represent the model climatology very well. In particular, the 276 

produced variance does not completely include model uncertainty. Therefore, the model 277 

climatological forecast distribution (or variance) could be incomplete, especially for the tail of a 278 

climatological distribution. The impact of ensemble size on the probability forecast has been 279 

investigated in Buizza and Palmer (1998) and Ma et al. (2012). An increase in ensemble size is 280 

strongly beneficial to the forecast when the size is fewer than 40 members. An effort is being 281 

made to create a model climatology using multi-member reforecast runs. This would provide 282 

more robust model climatology and improve extreme weather forecasts. 283 

 284 

c. Verification of v10 and v11 forecast products  285 

 Figure 7 shows the verification for the GEFS v10 and v11 bias-corrected forecasts for 286 

0000 UTC on 2 Jan. 2014 using the EFI method. In general, the both model versions capture the 287 

observed major extreme cold regions. But there are also some differences between the two 288 

versions. For this particular case, the v11 forecasts have a similar number of extreme cold events 289 

as the observations, with a FBI approximately equal to 0, while the v10 underestimates the 290 

number of extreme cold events and the FBI value is about -0.26. The v11 version has a higher 291 

HR but the ETS is slightly smaller when compared to v10, and has a large negative frequency 292 

bias. 293 

            The 11-day statistics are shown in Fig.8. Overall, v11 performs better than the v10 294 

version with a higher HR and ETS value. The v11 predicts more extreme events than are 295 
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observed, while the v10 version underestimates the number of events. The ANF for the new 296 

version has the highest ETS and closest match to the observations. The advantage of v11 over 297 

v10 can be also demonstrated in the performance diagram (Fig.9). Overall, v11 is closer to the 298 

upper right corner. This suggests that the current model upgrade has a more accurate 2-m 299 

temperature forecast (Zhu 2015) and a positive impact of extreme cold prediction. 300 

                     301 

d. Verification of forecast products for different reference climatology 302 

The current NCEP GEFS ANF product uses the 40-year reanalysis as reference 303 

climatology. To test the sensitivity of ANF and EFI skills to their reference we make verification 304 

comparisons with two different references (30-year CFSRR and 40-year reanalysis) in Fig. 10 305 

and Fig.11. The ANF and EFI calculated relative to the CFSRR climatology have slightly better 306 

HR, FBI and ETS than the reanalysis climatology (Fig.10). The relative forecasting performance 307 

with the two references can be also identified from the performance diagram (Fig.11). The 308 

plotted positions for the CFSRR reference are closer to the upper right corner than for the 309 

reanalysis reference, indicating a slightly higher accuracy when a more sophisticated analysis is 310 

used. The sensitivity of the verification scores to the references for the ANF and EFI is very 311 

similar. The differences in HR and FBI caused by using different references (Fig.10) are less 312 

important compared to differences from the different model versions (Fig.8). But the sensitivity 313 

of ETS to the model version and reference are roughly similar.  314 

 315 

4.3 Verification of heavy precipitation forecasts 316 

Figure 12 shows the 96-h forecasts of extreme precipitation regions from the (a) ANF and 317 

(b) EFI products, initiated at 0000 UTC 6 Jan. 2014. The shaded areas are the corresponding 72-318 
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96h accumulated precipitation forecasts. Both products forecast the two major extreme 319 

precipitation regions, located over Baffin Island and from the Gulf of Mexico to the Atlantic 320 

Ocean, respectively. Overall, the patterns of extreme precipitation from the two products are very 321 

similar. The definition of extreme precipitation depends on local climatology. The figure 322 

illustrates the dependence of extreme precipitation on the geographic location. For example, the 323 

strong precipitation region over Washington State and British Columbia is not diagnosed as an 324 

extreme precipitation event. Conversely, a relatively weak precipitation area over Baffin Island is 325 

predicted as an extreme precipitation event.  326 

Figure 13 compare the two products against the CCPA for another case over the CONUS. 327 

The 84-h forecasts of extreme precipitation regions were initiated at 0000 UTC 3 Dec. 2013. 328 

Again the forecasts from the two products are very similar and capture the major extreme 329 

precipitation region over the United States, although the forecasts underestimate the observed 330 

area of extreme precipitation. The verification scores demonstrate that the EFI predicts more 331 

extreme events with a slightly higher HR, FAR, and a similar ETS as the ANF. The proposed 332 

methodology will be applied to more cases to calculate the statistics of extreme precipitation 333 

prediction in the future.  334 

 335 

5. Conclusions 336 

In this work, we examine the ANF and EFI algorithms for observed extreme cold 337 

temperature and extreme heavy precipitation during the winter of 2013-2014. We develop a 338 

verification methodology in order to provide a tool to evaluate the relative performance of 339 

products from different methods (ANF and EFI), model versions (GEFS v10 and v11), forecasts 340 

(raw and bias-corrected), and different reanalysis climatology as well. We find a strong 341 
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correlation between the ANF and EFI. For extreme cold event forecasts, an EFI of -0.78 is 342 

approximately equivalent to -2σ ANF (or ANF=0.05) and for extreme precipitation forecasts, 343 

EFI=0.687 corresponds to ANF=0.95. This provides a threshold to evaluate and compare the two 344 

different forecast algorithms.     345 

The verification results show that both the ANF and EFI can predict extreme events. 346 

Verification statistics for extreme cold events in the winter of 2013-2014 indicate the EFI 347 

forecasts more extreme cold events than the ANF. The ANF produces a higher ETS value. The 348 

bias-corrected forecast has much better performance than the raw forecast when an 18-year 349 

control only reforecast was used as an approximate reference. This indicates a need for 350 

increasing the number of reforecast members to improve the extreme weather forecast. The work 351 

towards finding the optimized configuration of real-time GEFS reforecast runs are being 352 

conducted (Hamill et al. 2014; Guan et al. 2015). It will provide a better reference for the future 353 

applications. We also found that the upgrade of the GEFS model from v10 to v11 has a 354 

beneficial impact on the extreme cold weather forecast. Using a more recently developed 355 

climatology (CFSRR) as the reference gives a slightly better score than the 40-year reanalysis. A 356 

previously developed performance diagram (Roebber 2009) is also used to illustrate the 357 

verification results, further proving its usefulness as a visualization tool. 358 

 The current work also demonstrates that the verification methodology can be extended to 359 

extreme precipitation. We verified an extreme precipitation case that occurred in the winter of 360 

2013-2014. The results indicated a potential wider application of the verification methodology. 361 

In the future, we will examine more extreme precipitation cases and calculate long-term 362 

statistics.  Meanwhile, we will use the methodology to verify surface winds and surface pressure 363 

as well. The sensitivity of ANF-EFI relationship on forecast lead time will also be our focus. 364 
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Table: 502 

Table 1. The contingency table used to evaluate forecasts of extreme cold events. 503 

 504 

Figure Captions: 505 

Figure 1. Comparisons of the ensemble mean ANF and EFI for the 96-hr 2m temperature 506 

forecast over North America. The raw foreacst and model climatology are used in 507 

producing the ANF and EFI. The solid line represents the best-fit curve. The foreacsts are 508 

initaited at 0000 UTC 1 Mar. 2015. 509 

Figure 2. Comparison of the 50th percentile ANF and EFI for accumulated precipitation 510 

forecasts (72-96hr) over North America. The v11 raw foreacst and model climatology are 511 

used in producing the ANF and EFI. The solid line represents the best-fit curve. The 512 

foreacsts are initaited at 0000 UTC 6 Jan. 2014. 513 

Figure 3. Extreme cold weather event observations (a), 96-hr EFI forecast (b), 96-hr ANF (c), 514 

and verification for both methods (d). The v11 raw forecast and v11 model climatology 515 

are used in producing the ANF and EFI. The foreacsts are initaited at 0000 UTC 5 Mar. 516 

2015. 517 

Figure 4. Extreme cold weather event observations or anomaly analysis (ANA)  (a), 96-h raw 518 

EFI forecast (b), 96-h bias-corrected EFI forecast (c), and verification for the v11 RAW 519 

and v11 bias-corrected forecast (d). The 18-year control-only and CFSRR climatology 520 

are used in producing the raw and bias-corrected forecast products, respectively. The 521 

forecasts are initiated at 0000 UTC 2 Jan. 2014. 522 

Figure 5. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with different  523 
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algorithms (EFI and ANF) and forecasts (raw and bias-corrected) over North America. 524 

Blue and red bars are the v11 raw ANF and EFI, respectively; green and purple bars are 525 

the v11 bias-corrected ANF and EFI, respectively. All forecasts are 96-h forecasts from 526 

0000 UTC cycle. 527 

Figure 6. Performance diagram summarizing the SR, POD, bias, and CSI. Solid and dashed lines 528 

represent CSI and bias scores, respectively. Shown are 96-h forecasts of extreme cold 529 

weather for 11 indiviual days from the raw ANF (blue dots), raw EFI (red dots), bias-530 

corrected ANF (green dots), and bias-corrected EFI (purple dots). The four circles denote 531 

the corresponding 11-day scores.  532 

Figure 7. Extreme cold weather event observations (a), EFI product from v10 (b) and v11 (c) 96- 533 

h bias-corrected foreacsts, and verification for both of model versions (d). The forecasts 534 

are initiated at 0000 UTC 2 Jan. 2014 and the reference climatology is CFSRR. 535 

 536 

Figure 8. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with different 537 

algorithms (ANF and EFI) and model versions (v10 and v11) over North America. Blue 538 

and red bars are the v10 bias-corrected ANF and EFI, respectively; green and purple bars 539 

are the v11 bias-corrected ANF and EFI, respectively. All forecasts are 96-h forecasts 540 

from 0000 UTC cycle and the reference climatology is CFSRR. 541 

Figure 9. Performance diagram as in Fig.6, but for the comparisons of the two model versions.  542 

Blue and red dots are the v10 bias-corrected ANF and EFI, respectively; green and purple 543 

dots are the v11 bias-corrected ANF and EFI, respectively. All forecasts are 96-h 544 

forecasts from 0000 UTC cycle and the reference climatology is CFSRR. 545 
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Figure 10. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with 546 

different algorithms and reference climatology over North America. Blue and red bars are 547 

the v11 bias-corrected ANF with NCEP/NCAR reanalysis and CFSRR as reference, 548 

respectively; green and purple bars are the v11 bias-corrected EFI with NCEP/NCAR 549 

reanalysis and CFSRR as reference, respectively. All forecasts are 96-h forecasts from 550 

0000 UTC cycle. 551 

Figure 11. Performance diagram as in Fig. 6, but for the comparisons of the two reference 552 

climatology (30-year CFSR and 40-year reanalysis). Blues and green dots are ANF and 553 

EFI using the 40-year reanalysis as the reference; red and purple dots are ANF and EFI 554 

using the 30-year CFSRR as the reference. 555 

Figure 12. The 96-h forecasts of extreme precipitation regions (red contours) from the ANF (a) 556 

and EFI products (b). The shaded areas are corresponding 72-96hr accumulated 557 

precipitation forecasts (mm). The contours in (a) and (b) represent ANF=0.95 and 558 

EFI=0.687, respectively. The forecasts are initiated at 0000 UTC 6 Jan. 2014. 559 

Figure 13. The daily extreme precipitation distribution (60-84hr) for ANA (a), ANF (b), and EFI 560 

forecast (c), and verification for both of methods (d). The v11 forecasts are initiated at 561 

0000 UTC 3 Dec. 2013. 562 
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Table 1. The contingency table used to evaluate forecasts of extreme cold events. 564 
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 566 

 567 

 Yes forecast No forecast Total 

Yes observed A B A+B 

No observed C D C+D 
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 569 

 570 

 571 

 572 

 573 

Figure 1. Comparisons of the ensemble mean ANF and EFI for 96-hr 2m temperature forecast 574 

over North America. The raw foreacst and model climatology are used in producing the ANF 575 

and EFI. The solid line represents the best-fit curve. The forecasts are initiated at 0000 UTC 1 576 

Mar. 2015. 577 
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 584 

 585 

 586 

Figure 2. Comparison of the 50th percentile ANF and EFI for accumulated precipitation 587 

forecasts (72-96hr) over North America. The v11 raw foreacst and model climatology are used in 588 

producing the ANF and EFI. The solid line represents the best-fit curve. The foreacsts are 589 

initaited at 0000 UTC 6 Jan. 2014.  590 
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 611 

 612 

Figure 3. Extreme cold weather event observations or anormaly analysis (ANA)  (a), EFI 613 

forecast (b), ANF (c), and verfication for both of methods (d). The v11 raw forecast and v11 614 

model climatology are used in producing the ANF and EFI. The forecasts are initiated at 0000 615 

UTC 5 Mar. 2015. 616 
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 634 

 635 

Figure 4. Extreme cold weather event observations or anomaly analysis (ANA)  (a), 96-h raw 636 

EFI forecast (b), 96-h bias-corrected EFI forecast (c), and verification for the v11 raw and v11 637 

bias-corrected forecasts (d). The 18-year control-only and CFSRR climatology are used in 638 

producing the raw and bias-corrected forecast products, respectively. The forecasts are initiated 639 

at 0000 UTC 2 Jan. 2014. 640 
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 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

Figure 5. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with different 651 

algorithms (EFI and ANF) and forecasts (raw and bias-corrected) over North America. Blue and 652 

red bars are the v11 raw ANF and EFI, respectively; green and purple bars are v11 bias-corrected 653 

ANF and EFI, respectively. All forecasts are 96-h forecasts from 0000 UTC cycle. 654 
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 659 

Figure 6. Performance diagram summarizing the SR, POD, bias, and CSI. Solid and dashed 660 

lines represent CSI and bias scores, respectively. Shown are 96-h forecasts of extreme cold 661 

weather for 11 indiviual days from the raw ANF (blue dots), raw EFI (red dots), bias-corrected 662 

ANF (green dots), and bias-corrected EFI (purple dots). The four circles denote the 663 

corresponding 11-day scores.  664 
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 689 

Figure 7. Extreme cold weather event observations (a), EFI product from v10 (b) and v11 (c) 96- 690 

h bias-corrected foreacsts, and verification for both of model versions (d). The forecasts are 691 

initiated at 0000 UTC 2 Jan. 2014 and the reference climatology is CFSRR. 692 
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 704 

 705 

 706 

Figure 8. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with different 707 

algorithms (ANF and EFI) and model versions (v10 and v11) over North America. Blue and red 708 

bars are the v10 bias-corrected ANF and EFI, respectively; green and purple bars are the v11 709 

bias-corrected ANF and EFI, respectively. All forecasts are 96-h forecasts from 0000 UTC cycle 710 

and the reference climatology is CFSRR. 711 
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 716 

Figure 9. Performance diagram as in Fig.6, but for the comparisons between the two model 717 

versions. Blue and red dots are the v10 bias-corrected ANF and EFI, respectively; green and 718 

purple dots are the v11 bias-corrected ANF and EFI, respectively. All forecasts are 96-h 719 

forecasts from 0000 UTC cycle and the reference climatology is CFSRR. 720 
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 740 

Figure 10. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with 741 

different algorithms and reference climatology over North America. Blue and red bars are the 742 

v11 bias-corrected ANF with NCEP/NCAR reanalysis and CFSRR as reference, respectively; 743 

green and purple bars are the v11 bias-corrected EFI with NCEP/NCAR reanalysis and CFSRR 744 

as reference, respectively. All forecasts are 96-h forecasts from 0000 UTC cycle. 745 
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 753 

Figure 11. Performance diagram as in Fig. 6, but for the comparisons between the two reference 754 

climatology (30-year CFSR and 40-year reanalysis). Blue and green dots are ANF and EFI using 755 

the 40-year reanalysis as the reference; red and purple dots are ANF and EFI using the 30-year 756 

CFSR as the reference. All forecasts are 96-h forecasts from 0000 UTC cycle. 757 
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 772 

 773 

Figure 12. The 96-h forecasts of extreme precipitation regions (red contours) from the ANF (a) 774 

and EFI products (b). The shaded areas are the corresponding 72-96hr accumulated precipitation 775 

forecasts (mm). The contours in (a) and (b) represent ANF=0.95 and EFI=0.687, respectively. 776 

The forecasts are initiated at 0000 UTC 6 Jan. 2014. 777 
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 800 

Figure 13. The daily extreme precipitation distribution (60-84hr) for ANA (a), ANF (b), and EFI 801 

forecast (c), and verification for both of methods (d). The v11 forecasts are initiated at 0000 UTC 802 

3 Dec. 2013. 803 

a c b 


