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Abstract 30 

 31 

For the newly implemented Global Ensemble Forecast System version 12 (GEFSv12), 32 

a 31-year (1989-2019) ensemble reforecast dataset has been generated at the National Centers 33 

for Environmental Prediction (NCEP). The reforecast system is based on NCEP’s Global 34 

Forecast System version 15.1 and GEFSv12, which uses the Finite Volume 3 dynamical core. 35 

The resolution of the forecast system is ~25 km with 64 vertical hybrid levels. The Climate 36 

Forecast System (CFS) reanalysis and GEFSv12 reanalysis serve as initial conditions for the 37 

Phase 1 (1989–1999) and Phase 2 (2000–2019) reforecasts, respectively. The perturbations 38 

were produced using breeding vectors and ensemble transforms with a rescaling technique for 39 

Phase 1 and ensemble Kalman filter 6-h forecasts for Phase 2. The reforecasts were initialized  40 

at 0000 (0300) UTC once per day out to 16 days with 5 ensemble members for Phase 1 (Phase 41 

2), except on Wednesdays when the integrations were extended to 35 days with 11 members. 42 

The reforecast data set was produced on NOAA's Weather and Climate Operational 43 

Supercomputing System at NCEP.  44 

This study summarizes the configuration and dataset of the GEFSv12 reforecast and 45 

presents some preliminary evaluations of 500hPa geopotential height, tropical storm track, 46 

precipitation, 2-meter temperature, and MJO forecasts. The results were also compared with 47 

GEFSv10 or GEFS Subseasonal Experiment reforecasts. In addition to supporting calibration 48 

and validation for the National Water Center, NCEP Climate Prediction Center, and other 49 

National Weather Service stakeholders, this high-resolution subseasonal dataset also serves as 50 

a useful tool for the broader research community in different applications. 51 

52 
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1. Introduction 53 

The important role of a reforecast in validating and calibrating weather and climate 54 

model forecasts (Hamill et al. 2004, 2006, 2013, 2015; Hamill and Whitaker 2006; Wilks and 55 

Hamill 2007; Hagedorn et al. 2008, 2012; Hagedorn 2008; Hamill 2012; Hamill and Kiladis 56 

2013; Baxter et al. 2014; Scheuerer and Hamill 2015; Ou et al. 2016; Guan et al. 2015, 2019; 57 

Gascon et al. 2019), diagnosing model errors (Hamill et al. 2013), and predicting extreme or 58 

rare events (Hagedorn 2008; Hamill et al. 2008, 2013; Guan and Zhu 2017; Nardi et al. 2018; 59 

and Li et al. 2019) has been widely recognized. Currently, reforecast datasets are utilized 60 

operationally at several weather-climate centers worldwide. For instance, a reforecast dataset 61 

is used to calibrate forecasts at the Canadian Meteorological Center (CMC), the National 62 

Centers for Environmental Prediction (NCEP), and European Centre for Medium-Range 63 

Weather Forecasts (ECMWF) to improve numerical weather guidance for a variety of forecast 64 

timescales. In combination with an analysis climatology, a reforecast (i.e., model) climatology 65 

is also employed to provide real-time extreme weather forecasts for some common concern 66 

weather elements at NCEP (Guan and Zhu 2017) and ECMWF (LaLaurette 2003; Hagedorn 67 

2008). Reforecasts are used extensively in conjunction with hydrologic prediction (DeMargne 68 

et al. 2014; Scheuerer and Hamill 2018; Emerton et al. 2018).  More recently, as part of the 69 

Subseasonal Experiment (SubX; Pegion et al. 2019), seven modeling groups from the U.S. and 70 

Canada generated reforecast datasets, separately. The combined datasets provide a foundation 71 

for employing current best practice methods for real-time weeks 3 and 4 outlooks of hazardous 72 

and extreme events at the NCEP Climate Prediction Center (CPC). 73 

Ideally, creating a reforecast dataset requires a set of consistent reanalysis data as initial 74 

conditions. Both reforecast and reanalysis should also employ the same model system that is 75 

used in the actual real-time forecast, ideally at the same resolution. However, generating a full 76 

dataset for a reanalysis and reforecast, usually from 10 years to several decades of data, is an 77 

extremely time- and labor-intensive procedure and impractical in operational forecasting. 78 

Therefore, an inconsistent initial analysis had been used for the GEFSv11 (Guan and Zhu 2017) 79 

and GEFS-SubX reforecasts. For example, the 17 years (1999–2015) of GEFS_SubX 80 

reforecasts (Zhu et al. 2018; Li et al. 2019; Guan et al. 2019) used the Climate Forecast System 81 
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Reanalysis (CFSR) and Global Data Assimilation System (GDAS) as the initial conditions for 82 

1999–2010 and 2011–2016, respectively. In addition to the inconsistency of the analysis itself, 83 

the forecast systems generating the reanalysis are also quite different from the reforecast and 84 

real-time forecast systems. This inconsistency in reanalysis has resulted in a difference in the 85 

2-m temperature bias characteristics (Hamill 2017; Guan et al. 2019), especially for short lead 86 

times when initial conditions play a critical role in the forecast. This further confirms the strong 87 

desirability of simultaneously generating reanalysis and reforecast data in the operational 88 

implementation.   89 

On September 23, 2020, the FV3 (Finite-Volume)-based Global Ensemble Forecast 90 

System version 12 (GEFSv12) was implemented at the National Oceanic and Atmospheric 91 

Administration (NOAA). To provide seamless numerical guidance to a broad range of users 92 

and partners, the integration time of the GEFSv12 was extended from week 1 (weather 93 

forecasts) and week 2 (extended forecasts) to weeks 3-5 (subseasonal forecasts). 94 

Accompanying the GEFSv12 implementation, 20-year reanalysis and 31-year reforecast 95 

datasets were also simultaneously produced by NOAA’s Physical Science Laboratory (PSL) 96 

and Environmental Modelling Center (EMC), respectively, to support stakeholders CPC and 97 

the National Water Center (NWC) for subseasonal and hydrological applications. This marks 98 

the first official generation of a reanalysis/reforecast as an integral part of an implementation 99 

of the GEFS at NOAA. In addition, North American Ensemble Forecast System (NAEFS; 100 

Candille 2009; Candille et al. 2010) products have been updated based on the GEFSv12 Phase 101 

2 reforecast.  102 

The reforecast system configuration is summarized in Section 2. The reforecast dataset, 103 

public access, and data corrections are introduced in Section 3.  The statistical characteristics 104 

of the raw forecasts are described in Section 4. In Section 5, an example of the reforecast 105 

application is discussed. Summary and conclusions are given in Section 6. 106 

2. Reforecast system configuration 107 

The GEFSv12 reforecast system is based on the current operational Global Forecast 108 

System version 15.1 (GFSv15.1; EMC website, 2019) which uses the Geophysical Fluid 109 

Dynamics Laboratory (GFDL) FV3 Cubed-Sphere dynamical core (Lin and Rood 1997; Lin 110 

https://journals.ametsoc.org/view/journals/atsc/54/17/1520-0469_1997_054_2201_teolri_2.0.co_2.xml?rskey=hwJ0F4&result=1#s3
https://journals.ametsoc.org/view/journals/atsc/54/17/1520-0469_1997_054_2201_teolri_2.0.co_2.xml?rskey=hwJ0F4&result=1#s5
https://journals.ametsoc.org/view/journals/atsc/54/17/1520-0469_1997_054_2201_teolri_2.0.co_2.xml?rskey=hwJ0F4&result=1#s5
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2004; Putman and Lin 2007; Harris and Lin 2013). The resolution of the forecast system is ~25 111 

km (C384 grid) in the horizontal with 64 vertical hybrid levels with the top layer centered 112 

around 0.27 hPa (~55 km).  113 

The convection scheme used in the GEFSv12 is the Simplified Arakawa-Schubert 114 

(SAS) shallow and deep convection schemes (Han and Pan 2011) updated with a scale-aware 115 

parameterization (Han et al. 2017). The scheme was also further modified to reduce excessive 116 

cloud top cooling for the model stabilization. The cloud microphysics scheme is from GFDL, 117 

which includes five predicted cloud species (cloud water, cloud ice, rain, snow and graupel; 118 

Zhou et al. 2019, 2021). The vertical mixing process of the planetary boundary is based on the 119 

hybrid Eddy-diffusivity Mass-flux (EDMF) scheme (Han et al. 2016). The shortwave and 120 

longwave radiative fluxes are calculated using the rapid radiative transfer model (RRTM) 121 

developed at Atmospheric and Environmental Research (Clough et al. 2005). The GFS 122 

orographic gravity wave drag and mountain blocking schemes follows Alpert (1988), while 123 

convective gravity wave drag employs the scheme developed by Chun and Baik (1998). The 124 

GFS Noah land surface model (Chen et al., 1996; Koren et al. 1999; Ek et al. 2003; Michell et 125 

al. 2005) are used to simulate the land-surface processes. The surface layer parameterization 126 

follows Long (1984; 1986) and Zheng et al. (2012; 2017).  127 

The SST boundary condition is derived from a two-tiered Sea Surface Temperature 128 

(SST) and Near Sea Surface Temperature (NSST) approach that accounts for the day-to-day 129 

variability and diurnal variation of SST, respectively (Zhu et al. 2017, 2018; Li et al. 2019). A 130 

modern ensemble forecast system should include initial perturbations to approximate 131 

analysis/observation uncertainty and model perturbations to approximate the forecast 132 

uncertainty from model imperfections, such as the finite resolution of the prediction system 133 

and the use of deterministic parameterizations of sub-grid phenomena (Buizza et al. 1999; 134 

Palmer 2001, 2012; Berner et al. 2017). To improve the model’s uncertainty representation, 135 

stochastic kinetic energy backscatter (SKEB; Shutts and Palmer 2004; Shutts 2005) and 136 

stochastically perturbed parameterization tendencies (SPPTs; Buizza et al. 1999; Palmer et al. 137 

2009) are applied.  More details on the GEFSv12 forecast system can be found in Zhou et 138 

al. (2019; 2021). 139 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0007
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0021
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0010
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The reforecast was integrated once per day out to 16 days, except on Wednesdays when 140 

the forecast was extended to 35 days. In contrast to the real-time forecast system (31 members), 141 

the reforecast system has a smaller ensemble size to minimize computational expense: 5 and 142 

11 members for the 16-day and 35-day runs, respectively. As illustrated in Table 1, the 143 

reforecast utilizes two sets of analysis data because a consistent 31-year reanalysis is 144 

unavailable. 145 

  146 

Reforecast characteristic 1989-1999 2000-2019 

Reanalysis states for initial 

conditions 

CFSR (Saha et al. 2010) + 

bred vectors (Wei et al. 
2008) 

GEFSv12 (Hamill et al. 

2021) 

SST initial states OI (Reynolds et al. 2002) OI (Reynolds et al. 2002) 

SST forecast NSST (Zhu et al. 2017, 

2018; Li et al. 2019) 

NSST (Zhu et al. 2017, 

2018; Li et al. 2019) 

Soil moisture and 
vegetation classification for 
initial states 

Following Zobler 1986, 

1999, Dorman and Sellers 

1989).  

Following Ek et al. (2016) 

 147 

Table 1. The summary of initial and boundary conditions for the GEFSv12 reforecasts. 148 

 149 

For the Phase 1 reforecast (GEFSv12_p1, 1989–1999), the Climate Forecast System 150 

Reanalysis (CFSR; Saha et al. 2010) was used as the initial control analysis. The breeding 151 

vector and ensemble transform with rescaling (BV-ETR) cycling perturbations (Wei et 152 

al. 2008), generated for the NOAA’s 2nd generation GEFS reforecast (Hamill et al., 2013), 153 

was used as initial conditions for the perturbed members. The new 16 State Soil Geographic 154 

(STATSGO) soil classification and 20 International Geosphere Biosphere Programme (IGBP) 155 

vegetation classification (Ek et al. 2016) were applied to characterize soil and vegetation in the 156 

reforecast runs, although the CFSR used the old 9 soil texture classes (Zobler 1986, 1999) and 157 

13 vegetation catalogues (Dorman and Sellers 1989).  158 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0048
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0049
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0009
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0009
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0048
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0049
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD015901#jgrd17225-bib-0009
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For the Phase 2 reforecasts (GEFSv12_p2, 2000–2019), initial conditions were 159 

GEFSv12 reanalyses (Hamill et al. 2021). The reanalyses were generated from the FV3 160 

GFS/Ensemble Kalman Filter (EnKF) hybrid analyses and EnKF 6-h forecasts with the 161 

Incremental Analysis Update (IAU; Bloom et al. 1996) replay process, which distributes the 162 

analysis increments over each time step within a fixed time window (currently 2100–0300 163 

UTC). During this replay procedure, the climatological snow depths at 0000, 0600, and 1200 164 

UTC (affected by a bug in data assimilation, see Hamill et al. 2021) were replayed to 165 

corresponding snow analyses to adjust reanalysis states to be more consistent with the snow 166 

analyses at these times. The GEFSv12_p2 reforecast was initiated from the data at the end of 167 

the replay IAU window (i.e., 0300 UTC). For both the GEFSv12 reanalysis and GEFSv12_p2 168 

reforecast, soil moisture and vegetation were sorted based on the 16 soil-moisture and 20 169 

vegetation types (Ek et al. 2016). 170 

The GEFSv12 reanalysis also has several differences compared to the current 171 

operational analysis. First, the IAU process was applied to reduce noise and improve accuracy. 172 

Second, the NSST was replaced by Optimum Interpolation Sea Surface Temperature (OISST; 173 

Reynolds et al. 2002) to avoid an observed large SST bias in climatologically cloudy regions 174 

for the earlier assimilation years. Third, to reduce the computation resources required, the 175 

horizontal resolutions of the control and perturbed members were decreased from C768 (~13 176 

km) and C384 (~25 km) to C384 and C192 (~50 km), respectively. A detailed description of 177 

the GEFSv12 reanalysis can be found in Hamill et al. (2021). 178 

3. Reforecast dataset, public access, and data corrections 179 

a. Reforecast dataset and public access 180 

The full 31 years of reforecast data are currently archived on the High Performance 181 

Storage System (HPSS). All 590 variables in grib2 format are saved at 3-hour intervals at 0.25° 182 

resolution for the first 10 days and 6-hour intervals at 0.5° beyond 10 days of the forecast. By 183 

request, 77 of the 590 variables were stored on the WCOSS disk for quick access by the internal 184 

NOAA stakeholders. The 219 selected variables for the Phase 2 reforecasts are saved on 185 

dedicated disks mounted on NOAA/NWS/NCEP’s  ftp server ( 186 

ftp://ftp.emc.ncep.noaa.gov/GEFSv12/reforecast) and Amazon Web Services (AWS, 187 

https://journals.ametsoc.org/view/journals/mwre/144/7/mwr-d-15-0246.1.xml#bib6
http://ftp.emc.ncep.noaa.gov/GEFSv12/reforecast
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https://noaa-gefs-retrospective.s3.amazonaws.com/index.html), which are accessible by the 188 

broader community. These 176 upper-air and 43 surface or single-level publicly accessible 189 

variables are separately listed in Tables 2 and 3, respectively. For pressure-level data above 190 

700 hPa (Table 2), the Phase 2 data are also saved at 0.5-degree grid spacing, even during the 191 

first 10 days of the forecast, to conserve space. 192 

 193 

Vertical   Level U V W T Height (P) Q (RH) PV 

1 hPa X X X X X   

2 hPa X X X X X   

3 hPa X X X X X   

5 hPa X X X X X   

10 hPa X X X X X   

20 hPa X X X X X   

30 hPa X X X X X   

50 hPa X X X X X   

70 hPa X X X X X   

100 hPa X X X X X X  

150 hPa X X X X X X  

200 hPa X X X X X X  

250 hPa X X X X X X  

300 hPa X X X X X X  

400 hPa X X X X X X  

500 hPa X X X X X X  

600 hPa X X X X X X  

700 hPa X X X X X X  

800 hPa X X X X X X  

850 hPa X X X X X X  

900 hPa X X X X X X  

925 hPa X X X X X X  

950 hPa X X X X X X  

975 hPa X X X X X X  

1000 hPa X X X X X X  

1(hybrid) X X X X X (X)  

2(hybrid) X X X X X (X)  

3(hybrid) X X X X X (X)  

4(hybrid) X X X X X (X)  

2x10-6 (PV) X X  X (X)   

https://noaa-gefs-retrospective.s3.amazonaws.com/index.html
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310x10-6 K m2 kg-1 s-1 

(Isentropic) 
      X 

320x10-6 K m2 kg-1 s-1 

(Isentropic) 
      X 

350x10-6 K m2 kg-1s-1 

(Isentropic) 
      X 

10m (AGL) X X      

100m (AGL) X X      

 194 

Table 2.  One-hundred seventy-six upper air variables. 195 

 196 

Variables total 

Mean sea-level pressure 1 

Surface pressure 1 

Surface height 1 

Skin temperature 1 

Soil temperature at 0.0-0.1, 0.1-0.4, 0.4-1.0 and 1.-2. m depth 4 

Volumetric soil content at 0.0-0.1, 0.1-0.4, 0.4-1.0 and 1.-2. m depth 4 

Water equivalent of accumulated snow depth  1 

2-m temperature 1 

2-m specific humidity 1 

Maximum temperature in last 6-h period (00, 06, 12, 18 UTC) or in last 

3-h period (03, 09, 15, 21 UTC) 
1 

Minimum temperature in last 6-h period (00, 06, 12, 18 UTC) or in last 

3-h period (03, 09, 15, 21 UTC) 
1 

Surface wind gust 1 

Surface wind stress, u-component 1 

Surface wind stress, v-component 1 

Surface roughness 1 

Total precipitation in last 6-h period (00, 06, 12, 18 UTC) or in last 3-h 

period (03, 09, 15, 21 UTC) 
1 

Convective precipitation in last 6-h period (00, 06, 12, 18 UTC) or in 

last 3-h period (03, 09, 15, 21 UTC) 
1 

Non-convective precipitation in last 6-h period (00, 06, 12, 18 UTC) or 

in last 3-h period (03, 09, 15, 21 UTC) 
1 

Boundary layer height 1 

Average surface latent heat net flux average in last 6-h period (00, 06, 

12, 18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Average surface sensible net heat flux average in last 6-h period (00, 

06, 12, 18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Average ground heat net flux average in last 6-h period (00, 06, 12, 18 

UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Convective available potential energy 1 
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Convective inhibition 1 

0-3 km Storm relative helicity 1 

Perceptible water 1 

Total ozone 1 

Total cloud cover average in last 6-h period (00, 06, 12, 18 UTC) or in 

last 3-h period (03, 09, 15, 21 UTC) 
1 

Downward shortwave radiation flux at the surface average in last 6-h 

period (00, 06, 12, 18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Downward longwave radiation flux at the surface average in last 6 -h 

period (00, 06, 12, 18 

UTC) or in last 3-h period (03, 09, 15, 21 UTC) 

1 

Upward shortwave radiation flux at the surface average in last 6-h 

period (00, 06, 12, 18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Upward longwave radiation flux at the surface average in last 6-h 

period (00, 06, 12, 18 

UTC) or in last 3-h period (03, 09, 15, 21 UTC) 

1 

Upward longwave radiation flux at the top of the atmosphere average in 

last 6-h period (00, 06, 12, 18 UTC) or in last 3-h period (03, 09, 15, 21 

UTC) 

1 

Momentum Flux, U-Component Average in last 6-h period (00, 06, 12, 

18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Momentum Flux, V-Component average in last 6-h period (00, 06, 12, 

18 UTC) or in last 3-h period (03, 09, 15, 21 UTC) 
1 

Cloud ceiling 1 

Water runoff sum over the last 6-h period (00, 06, 12, 18 UTC) or in 

last 3-h period (03, 09, 15, 21 UTC)  
1 

 197 

Table 3. Forty-three surface and other single-level variables. 198 

 199 

b. Data corrections 200 

The integrations for the Phase 2 reforecasts were initiated from the 0300 UTC restart 201 

data files. Thus, the model outputs for the 41 0000-0300 UTC and 0000-0600 UTC 202 

accumulated / minimum / maximum / average variables are incorrect since they were actually 203 

calculated based on the values from the beginning of integration (i.e., 0300 UTC) to the first 204 

time-step and to 0600 UTC, respectively. These 41 variables were post-processed by 205 

combining the control NEMSIO (NOAA Environmental Modeling System Input/Output) 206 

replay reanalysis at 0300 UTC and the reforecast data at 0600 UTC. Note that the replay 207 

process was only applied to the control members so that for 0300 UTC, the reforecast data for 208 

each member was simply replaced by the corresponding control-member replay data. For 0600 209 

UTC, the minimum and maximum are the smaller and larger of the two values, respectively, 210 

while the accumulated values are the sum of the two. The 6-h average fields were processed in 211 
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a more complicated manner. The raw reforecast average field at 0600 UTC is actually the 212 

0300–0600 UTC accumulation divided by a 6-h time period, while in reality the accumulations 213 

take place over a 3-h period.  This was corrected to a 3-h average and then averaged with the 214 

reanalysis data at 0300 UTC. But for some variables and conditions such an average is not 215 

suitable and special processing is needed. For cloud-base/cloud-top pressures and cloud-top 216 

temperatures, the 0000–0600 averages were set to be the same as those at 0300 UTC when 217 

clouds do not exist in the 0600 UTC, while the corresponding averages were set to be the same 218 

as those at 0600 UTC when clouds do not present in the 0300 UTC forecasts. Such a special 219 

rule was also applied to snow melting flux.  220 

4. Reforecast evaluation 221 

In addition to the GEFSv12 reforecast and corresponding reanalyses used for 222 

initialization described in Section 3, there are also six sets of additional data being used for the 223 

current evaluations and comparisons. These additional datasets are as follows: 224 

1. CFS reanalysis (1979–Mar 2011) at T382L64 (~34 km horizontal) resolution. The 225 

documentation of the system, including the configurations, can be found in Saha et al. 2010. 226 

The dataset was used as the initial condition for NOAA's second-generation of reforecasts (or 227 

GEFSv10 reforecast; Hamill et al. 2013) and GEFS_SubX reforecast (Zhu et al. 2018). 228 

2. NCEP’s operational analysis from the GDAS (NCEP hybrid Global Data Assimilation 229 

System) (2011–Present). The documentation of the GDAS upgrade, including the changes in 230 

configurations, can be tracked through the EMC web-page: 231 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php  232 

These data served as the initial condition for the GEFSv10 and GEFS_SubX reforecats for the 233 

periods 2011–present and 2011–2016, respectively. 234 

3. The European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis 235 

version 5 (ERA5) (1950–Present) data approximately 30 km horizontal resolution with 137 236 

hybrid vertical levels, up to an 80 km model top. The documentation of the ERA5 system, 237 

including the configurations, can be found through ECMWF’s web-page: 238 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation. These data were 239 

used to evaluate the 2-m temperature forecast for the GEFSv12 and GEFS_SubX reforecast. 240 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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4. NCEP’s Climate Calibrated Precipitation Analysis (CCPA; 2002–Present) version 4 241 

(v4) for Continental United States (CONUS). The documentation can be found in Hou et al. 242 

(2014) and Luo et al. (2018). These data were used to evaluate precipitation forecasts for the 243 

GEFS_SubX and GEFSv12 reforecasts and to calibrate the GEFSv12 reforecast. 244 

5. GEFSv10 reforecast (1985–2011) and forecast (2012–2019). The documentation on 245 

this system and configurations can be found through Zhu et al. (2012) and Hamill et al. (2013). 246 

These data were used for the comparison with the GEFSv12 reforecast for hurricane track 247 

forecasts. 248 

6. GEFS_SubX reforecast (1999–2016) and forecast (2017–2018) at TL574L64 (day 0–249 

8; ~34 km horizontal resolution) and TL382L64 (day 8–35; ~52 km horizontal resolution). The 250 

documentation of the GEFS_SubX system and the configurations can be found in Zhu et al. 251 

(2018). The GEFS_SubX reforecast is considered a benchmark dataset to measure the ability 252 

of the GEFSv12 reforecast to predict 500-mb geopotential height, 2-m temperature, 253 

precipitation, and Madden Julian Oscillation (MJO).  254 

a. 500-hPa geopotential height 255 

The anomaly correlation of 500-hPa geopotential height is widely used as an essential 256 

metric to estimate the skill of weather forecasts, especially for mid- and high-latitude weather 257 

systems. Here, 500-hPa geopotential height for the GEFS_SubX and GEFSv12_p2 reforecasts 258 

are evaluated against their own analyses (i.e., CFSR and GEFSv12 reanalysis). CDAS2 is the 259 

analysis climatology used to calculate analysis anomalies as well as forecast anomalies for 260 

both GEFSv12_p2 and GEFS_SubX. Over the Northern Hemisphere (NH, Fig. 1), the 261 

GEFSv12_p2 outperforms the GEFS_SubX with improvements in average anomaly 262 

correlation (AC) of 1.5%, 5.5%, and 2.5% for week 1, week 2, and weeks 3 and 4 forecasts, 263 

respectively. Like Zhu et al.’s work (2018), the anomaly correlations for week 1, week 2, 264 

and weeks 3 and 4 are calculated by averaging forecast lead days 1–7, 8–14, and 265 

15–28, respectively, and the corresponding analysis valid at 0000 and 0012 UTC. 266 

Over the Southern Hemisphere (SH, Fig. 2), the average AC scores are slightly lower than over 267 

the NH, which is consistent with the previous finding in Zhu et al. (2018) for the evaluation of 268 

the 16-year GEFS_SubX reforecast. Relative to the GEFS_SubX, the GEFSv12_p2 shows 269 
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1.3% and 3.0% improvements for week 1 and week 2 forecasts and a 3.3% degradation for the 270 

weeks 3 and 4 forecasts. The significant tests indicate that the Week -1 and Week-2 271 

GEFSv12_p2 AC are significantly higher than GEFS_SubX for both NH and SH, while the 272 

corresponding AC values are not significantly different between the GEFSv12_p2 and 273 

GEFS_SubX for Weeks 3 and 4. The figures also reveal higher AC scores in the second decade 274 

(2010–2019) than the first decade (2000–2009) of the reforecast, and the corresponding 275 

calculations indicate that the weeks 3 and 4 scores for the NH in the second decade increase 276 

by 0.074 (or 25%) and 0.077 (or 26%) for the GEFS_SubX and GEFSv12_p2, respectively. 277 

The enhanced observation system (Noh et. al. 2020) may be an explanation for the better 278 

performances of 500-hpa forecasts in the most recent decade. 279 

 280 

 281 
Figure 1. Ensemble‐mean anomaly correlation for Northern Hemisphere (NH; 20°N–80°N) 282 
500‐hPa geopotential height for week 1 (a), week 2 (b), and weeks 3&4 (c) forecasts. The black 283 

and red colors denote the GEFS_SubX and GEFSv12_p2. The average scores for the two sets 284 
of reforecasts are indicated by the dashed lines and shown in parentheses. Note there is a data 285 
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gap from Dec 2016 to May 2017, corresponding to the period between the GEFS_SubX 286 
reforecast and corresponding real-time forecast. A 6-case moving average is applied to the time 287 

series. Since the forecasts are initialized every 7 days, the moving average spans over 42 288 

calendar days. 289 

 290 

 291 

Figure 2. The same as Fig. 3 except for the Southern Hemisphere (SH; 20°S–80°S). 292 

 293 

b. Tropical cyclone track 294 

Tropical cyclone (TC) track forecasting has been challenging (Landsea and Cangialosi 295 

2018), especially for the extended range (beyond day 5). To evaluate the ability of GEFSv12 296 

to forecast tracks, track errors of the 5-member ensemble means of the GEFSv10 and GEFSv12 297 

are compared for the 31-year reforecast period. The GEFSv10 was selected because it has a 298 

large sample data size like the GEFSv12 does. For consistency, in addition to the 5-member 299 

runs of the GEFSv12 reforecast, only the first five members of the GEFSv10 and of the 11-300 

member runs of GEFSv12 are used in this comparison. The National Hurricane Center 301 
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(NHC)/Joint Typhoon Warning Center (JTWC) best (or observed) tracks were used as a 302 

reference for evaluating the two datasets.  303 

The GEFSv12 skill in forecasting TC tracks has improved from the GEFSv10. Figure 304 

3 shows the three-basin (Atlantic, East Pacific and West Pacific) averaged track errors from 305 

both forecast systems, binned by decade. For all three decades, the GEFSv12 reduces the track 306 

errors with the maximum reduction during the 2000-2010 period, when the reductions reach 307 

approximately 25% and 10% for 1-day and 7-day forecasts, respectively. For the GEFSv10, 308 

the track errors decline with decade (Fig. 3), which is qualitatively consistent with the finding 309 

in Hamill et al. (2013), based on the 1985-2011 reforecast. This evolution of the track errors is 310 

attributed to the improvement in the initial analysis over the multi-decade period, implying the 311 

important impact of initial conditions on the TC track forecast. For the shorter lead times, the 312 

decline in error from the 2000–2010 to 2011–2019 period is more evident than that from the 313 

1989–1999 to 2000–2010 period. For example, the error reduction is 11.6 nm (or 29.8%) 314 

between the two later periods, while the corresponding reduction is 5.7 nm (or 12.8%) between 315 

the two earlier periods. In addition to the observation data increase with decade, the analysis 316 

system upgrade from CFSR to GFS/GDAS and the perturbation method change from BV-ETR 317 

to EnKF during the 2011–2019 period may be a reason for the observed sharper error reduction. 318 

The impact of initial conditions is also further confirmed in the current GEFSv12 reforecast. 319 

The track errors in the two GEFSv12 reanalysis time periods (2000–2010 and 2011–2019) are 320 

more consistent with each other and much smaller compared to the CFSR period (1989–1999), 321 

showing the importance of initialization with modern assimilation methods. The consistent 322 

error characteristics during the Phase 2 reforecast provide a good potential for statistical post 323 

processing algorithms to improve the TC track forecast (Galarneau and Hamill 2015). In 324 

addition to the initial conditions, the reforecast model itself also plays a role in influencing the 325 

accuracy of the track forecast. This is illustrated by the comparison between the GEFSv10 and 326 

GEFSv12 during the 1989–1999 period, when both reforecasts used the CFSR as the initial 327 

condition. As should be expected, the model’s influence becomes more pronounced at  longer 328 

lead times (> ~4-days). Compared to GEFSv10, the GEFSv12 reduces the track errors by 6.3% 329 

and 5.5% for the 6-day and 7-day forecasts, respectively. 330 
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 331 

 332 

 333 

 334 

 335 
Figure 3. The TC track errors averaged over the Atlantic, East Pacific and West Pacific basins 336 
binned by decade during the 31-year reforecast for GEFSv10 (dashed lines) and GEFSv12 337 
(solid lines). Black, blue, and red lines denote the 1989–1999, 2000–2010, and 2011–2019 338 

periods, respectively. 339 

 340 

c. Precipitation 341 

The precipitation forecasts for the GEFS_Subx and GEFSv12 were estimated against 342 

the CCPAv4 for the 2002–2019 period when the reforecast and CCPA data overlapped. The 343 

CCPA climatology was calculated based on the 2002-2019 CCPA data. For this study, the 11-344 

member reforecasts and CCPA data were interpolated to a 1°x1° grid over the Continental 345 

United States (CONUS), the only available analysis region. Figures 4a and 4b show the 346 

comparisons of Brier score (BS, Brier 1950) between the two sets of reforecasts for the 24-h 347 

accumulated precipitation greater than 1 mm and 5 mm, respectively. The BS, ranging between 348 

0 and 1, is commonly used to verify the accuracy of a probability forecast. Clearly, the 349 
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GEFSv12 consistently displays the better (i.e., lower) Brier scores compared to the 350 

GEFS_SubX, with a more obvious improvement at lead times shorter than about 10 days. 351 

Forecast skill decreases with lead time and reaches saturated values at approximately day 13 352 

for all situations. The precipitation probability forecast biases for 12–36 hrs and 60–84 hrs for 353 

amounts greater than 1-mm and 5-mm were measured by reliability diagrams (Fig. 5). The 354 

GEFSv12 and GEFS_SubX show very similar performance for the precipitation greater than 355 

1.00 mm. For the heavier precipitation category (> 5 mm), the GEFSv12 slightly outperforms 356 

the GEFS_SubX with its curves being closer to the diagonal lines. Fig. 5 also shows the 357 

reliability curves are much closer to the diagonal at low probabilities but veering away for high 358 

probabilities. The Brier Skill Score (BSS, Wilks 1995) measures the improvement of the 359 

probability forecast over the reference climatology. Unlike BS, where lower is better, for BSS 360 

higher is better. In the heavier rain conditions, the BSS for the probabilistic precipitation 361 

forecast for the GEFSv12 are improved by about 16.1% and 20.1% for 12–36 hrs and 60–84 362 

hrs, respectively (Fig. 5). The improvements are also observed for the other lead times (not 363 

shown). These improvements are attributed to the combined influence of better initial 364 

conditions, more advanced microphysics schemes, finer resolution and a new FV3 dynamic 365 

core. The impact that each of these factors has individually on the evaluation is not addressed 366 

in this study. 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 
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Figure 4. The daily average Brier Score of the CONUS probabilistic quantitative 377 

precipitation forecast (PQPF) from 2002 to 2019 for 24-h accumulated precipitation greater 378 

than or equal to 1.00mm (top) and 5.00mm (bottom). The comparison is for the 379 

GEFS_SubX reforecast (black) and GEFSv12_p2 reforecast (red) that were run once per 380 

week (Wednesday) with 11 members out to 35 days. The reference truth is CCPAv4. 381 
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 382 
 383 
Figure 5. The reliability diagram of the CONUS probabilistic quantitative precipitation 384 

forecast (PQPF) from 2002 to 2019 for 24-h accumulated precipitation greater than or equal to 385 
1.00mm (12-36 hours, top left; 60-84 hours, top right) and 5.00mm (12-36 hours, bottom left; 386 
60-84 hours, bottom right). The comparison is for the GEFS SubX version reforecast (black) 387 

and GEFSv12_p2 reforecast (red) that run once per week (Wednesday) with 11 members out 388 
to 35 days. The reference truth is CCPAv4. The average reliability score (RELI) and Brier skill 389 

score (BSS) are also presented in each subplot. (Note: This is for a raw ensemble forecast with 390 
limited ensemble members (11) compared to the operational 31 members.) 391 
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d. MJO prediction skill 392 

 The newly operational GEFSv12 extended its output to +35 days lead to cover the sub-393 

seasonal time scale. The MJO is one of the most important climate phenomena for sub-seasonal 394 

forecasts. Here we estimate MJO prediction skill using the real-time multivariate MJO (RMM) 395 

index (Wheeler and Hendon 2004) for the GEFS_SubX, GEFSv12_p1, and GEFSv12_p2 (Fig. 396 

6). Skill is defined as the bivariate anomaly correlation between the analysis and forecast 397 

RMM1 and RMM2 index. For this comparison, the CFSR (GEFSv12 reanalysis) serves as the 398 

reference analysis for the GEFS_SubX and GEFSv12_p1 (GEFSv12_p2). In other words, the 399 

estimates are based on their own analysis data. Overall, the MJO forecast skill for the 400 

GEFSv12_p2 (~21.5 days) is similar to the GEFS_SubX and GEFSv12_p1 (~21 days) when 401 

using AC=0.5 as the threshold of useful skill. The SubX forecast skill for the 20-year sample 402 

in this study is also very comparable to the estimate (~21–22 days) that was made using a much 403 

smaller sample size (2 years) in Zhu et al. (2018) and Li et al. (2019). The GEFSv12_p2 also 404 

exhibits higher skill for shorter lead times (< ~18 days) than the GEFSv12_p1, possibly due to 405 

the benefit of the improved initial conditions for the Phase 2 reforecast. For lead times longer 406 

than 22 days, the forecast skill for all three sets of data is poor. A fully coupled atmosphere-407 

ocean-wave-ice model, currently under development at NCEP, aims to improve the MJO 408 

forecast skill, especially for longer lead times. The reader is referred to Hamill and Kiladis 409 

(2013) for MJO verification on GEFSv10 reforecasts. 410 

 411 
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 412 
 413 
Figure 6. The real-time multivariate MJO (RMM) skill as a function of lead time for 414 

GEFS_SubX (black; 2000–2016), GEFSv12_p1 (red; 1989–1999), and GEFSv12_p2 (blue; 415 
2000–2019) reforecasts. 416 

 417 

e. 2-meter temperature errors 418 

 The January and July global 2-m temperature mean errors (or biases) for the 11-419 

member runs were calculated for week 1, week 2, and weeks 3 and 4 during the GEFSv12_p1 420 

(Fig. 7) and GEFSv12_p2 (Fig. 8) reforecast periods. The biases of week 1, week 2, and weeks 421 

3 and 4 are the day 1–7, 8–14, and 15–28 averaged forecast errors over the corresponding 422 

forecast periods, respectively. Also displayed are the differences between CFSR and ERA5 423 

(Fig. 7 a, b) and the differences between the GEFSv12 reanalysis and ERA5 (Fig. 8 a,b). The 424 

ERA5 was used as the reference for both phases to ensure a consistent comparison. A large 425 

warm bias over northern Asia is persistently seen in January (Figs. 7 a, c, e, and f and Figs. 8 426 

a, c, e, and f) with a decreasing trend over increasing forecast lead time. In general, the error 427 

in 2-m temperature at the weeks 3 and 4 timescale is nearly saturated (Guan et al. 2019) and 428 

the impact from initial conditions decreases. At this timescale, the GEFSv12 generates a cold 429 

bias over North America (NA) in January (Figs. 7 g and 8 g). The cold bias locations are 430 
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different, mostly over the eastern United States for GEFSv12_p1 and western Canada for 431 

GEFSv12_p2. A larger cold bias for the boreal winter season over the NA domain has been 432 

persistently observed in several generations of the NCEP GEFS (Guan et al. 2015, 2019) and 433 

was thought to be related to the imperfect parameterization of winter-associated physical 434 

processes (Guan et al. 2019). 435 

 436 
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 437 
 438 
Figure 7. The difference in 2-m temperature (°C) between the CFSR and ERA5 for January (a) 439 

and July (b) over phase 1. Spatial distribution of 2-m temperature mean error (i.e., bias) over 440 
phase 1 for January during (c) week 1, (e) week 2, and (h) weeks 3 and 4 forecasts, and July 441 

during (d) week 1, (f) week 2, and (g) weeks 3 and 4 forecasts. 442 
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 443 
 444 
Figure 8. The difference in 2-m temperature (°C) between the GEFSv12 reanalysis and ERA5 445 

for January (a) and July (b) over phase 2. Spatial distribution of 2-m temperature mean error 446 
(i.e., bias) over phase 2 for January during (c) week 1, (e) week 2, and (h) weeks 3 and 4 447 

forecasts, and July during (d) week 1, (f) week 2, and (g) weeks 3 and 4 forecasts.  448 

 449 
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Snow is considered to be one of the most important wintertime land surface 450 

characteristics. To illustrate the influence of the snow forecast on bias characteristics, we 451 

compare the 2-m temperature bias over the NA domain for the 408h forecast (approximately 452 

the middle of week 3) with snow cover, without snow cover, and for all conditions (Fig. 9). 453 

The comparison was performed based on control members for the GEFSv12_p2 reforecast 454 

period. January–March is selected because those months show a consistently large cold bias 455 

(see red line in Fig.10) and the expected frequent occurrences of snow cover. The selection by 456 

individual members leads to a clear division between snow-covered and snow-free cases. The 457 

existence of forecast snow was inferred if the snow water equivalent is greater than or equal to 458 

1mm. Clearly, the 2-m temperature bias characteristics are quite different between the two 459 

conditions (Fig. 9c and d). Figure 10 shows the time evolution of biases over a small region 460 

near the central US. A larger cold bias is dominant under the existence of snow cover with a 461 

domain-averaged value of -4.79°C during the GEFSv12_p2 period. In contrast, bias is much 462 

smaller under snow-free conditions where the average value is about -0.18°C. This indicates 463 

there is considerable room for improving the 2-m temperature forecast under snow-covered 464 

conditions. An improvement in modeling snow-associated physical processes would 465 

undoubtedly lead to a better 2-m temperature forecast. The large difference in bias 466 

characteristics between cases with and without snow cover also suggests that statistical 467 

calibration of 2-m temperature should be performed based on the existence of snow. It was 468 

noted that the bias correction using a unified 2-m temperature bias climatology for the NA cold 469 

season is much less efficient compared to the warm season (Guan et al., 2019). Apparently, 470 

the proposed snow dependent bias correction method should improve statistical post 471 

processing for the 2-m temperature forecast during the cold season. This will be confirmed in 472 

our future work. 473 

  474 

 475 
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 476 

 477 

Figure 9. Percentage of snow cover days (a), 2-m temperature forecast bias under all conditions 478 
(b), bias with snow cover forecast (c), bias without snow cover forecast (d) for 408-h control-479 

member forecast over NA. The results are based on the GEFSv12_p2 reforecast for January, 480 

February, and March. 481 

 482 

 483 



27 
 
 

 

 484 

 485 

Figure 10. Time series of 2-m temperature forecast errors for 408-h control-member forecast 486 

over a small region (40°N-45°N, 90°W-100°W) near the central US (marked with the black 487 
rectangle in Fig. 9a). Black, red, and blue solid curves indicate the errors for January, February, 488 

and March forecasts under all conditions, with, and without snow cover, respectively. The 489 

corresponding dashed lines denote the averages over the entire period. 490 

 491 

In contrast to January 2-m temperature biases in the initial state are relatively smaller 492 

in July (Figs. 7b and Figs. 8b). For weeks 3 and 4, the model showed a large warm bias over 493 

the central United States (US) during the GEFSv12_p1, which is consistent with the findings 494 

in Guan et al. (2019) though an earlier forecast system (i.e., GEFS_SubX) was used in that 495 

study. During the GEFSv12_p2, the model shows a bias pattern similar to the GEFSv12_p1, 496 

but the warm bias over the central US is reduced.       497 

 To better understand the impact of using different initial conditions and forecast 498 

systems to produce 2-m temperature forecasts, the seasonal variability of 2-m temperature bias 499 

is compared for the NA weeks 3 and 4 forecasts (land only) among the GEFS_SubX, 500 

GEFSv12_p1, and GEFSv12_p2 in Fig. 11. All three sets of reforecasts display a cold bias 501 

during the October-April and warm bias during the May-June period. The GEFS_SubX shows 502 
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the strongest seasonal variability (or largest amplitudes) with a maximum cold bias of -1.8°C 503 

in March and warm bias of 1.5°C in June. When the forecast systems are the same (i.e., 504 

GEFSv12_p1 and GEFSv12_p2), the differences in 2-m temperature bias are relatively small. 505 

Overall, the GEFSv12_p1 is warmer than the GEFSv12_p2, except in December. The 506 

systematic difference during the July-September period is also noteworthy. Further diagnosis 507 

is needed to address this difference in the future. 508 

 509 

 510 

 511 

Figure 11. Weeks 3 and 4 biases in 2-m temperature forecasts averaged during the GEFS_SubX 512 
(black, 1999–2016), GEFSv12_p1 (red, 1989–1999), and GEFSv12_p2 (blue, 2000–2019) 513 

reforecast periods over NA, land-only. 514 

 515 

5. Post-processing of reforecast (precipitation) 516 

 Calibration is one of the most common applications of a reforecast dataset. 517 

Precipitation is one of the most impactful weather elements (Hamill and Whitaker 2006; 518 

Hamill et al. 2008; Hamill 2012; Schmeits and Kok 2010; Hamill et al. 2015; Hamill and 519 

Scheuerer 2018; Scheuerer and Hamill 2018; Specq and Batté 2020). Here we demonstrate the 520 

impact of using reforecast data to improve precipitation forecasts. 521 

a Methodology 522 
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We take advantage of long-term training data to calibrate precipitation through a 523 

quantile-mapping technique (Ines and Hansen 2006; Hamill and Scheuerer 2018). A ‘quantile-524 

based’ bias correction approach, also referred to as ‘histogram equalization’ and/or ‘rank 525 

matching’ (Hamlet et al. 2002; Wood et al. 2004; Piani et al. 2010), is useful to statistically 526 

transform rainfall simulated by a model to bias corrected data.  527 

In this study, the statistics of 24-hr accumulated rainfall for CCPA and GEFSv12 528 

reforecasts were determined independently for each grid point and each lead times over 529 

CONUS. For simplicity, the 5-member ensemble means for Day-1, 5, 10, and 15 forecasts 530 

during the 2002-2019 period were used for this practice. The method can also be applied to the 531 

individual ensemble members. The corresponding sample size at each grid point and each lead 532 

time is 6574 days. The rainfall intensity distributions for both CCPA and GEFSv12 reforecasts 533 

are well approximated by the gamma distribution.  The leave-one-out-cross-validation 534 

procedure has been implemented. For example, 2019 forecasts are trained using 2002-2018. 535 

  The bias-corrected procedure is to do a transformation between CCPA cumulative 536 

distribution function (CDF) and reforecast CDF, rather than explicitly to calculate bias. The 537 

formula for the calibration for a particular lead time (t) and grid (i, j) is expressed as follows:  538 

Qbc (i, j, t) = FCCPA
-1(FGEFSv12 (Qraw (i, j, t)))                                                            (1) 539 

The bias-corrected value (Qbc) is the inverse of the CCPA CDF (FCCPA
-1) at the probability 540 

corresponding to the reforecast CDF (FGEFSv12) for a given raw forecast (Qraw). 541 

b. Application 542 

Figures 12 and 13 demonstrate that both 24-h precipitation amounts and precipitation 543 

probability distributions in the calibrated forecast are more consistent with the CCPA than the 544 

raw forecasts. The bias correction dramatically reduces the wet bias over the entire CONUS 545 

(Fig. 12). For longer lead times (day 10 and day 15; Fig. 13), the raw forecast tends to 546 

underestimate the probability of precipitation less than ~7.5 mm/day and overestimate the 547 

corresponding value more than ~7.5 mm/day. After the calibration, the model curves overlap 548 

the observed curves for all lead times (Fig. 13). The calibration using long-term reforecast data 549 

is particularly important in improving the model climatology for the heavy precipitation events 550 

(> 50 mm) as illustrated in Figure 14. In the raw forecast, the model 24-h precipitation events 551 
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exceeding 50 mm are substantially lower than the CCPA, especially for the longer lead times, 552 

when heavy (or extreme) precipitation events are completely missed for most of the domain. 553 

After the bias correction, both distributions and magnitudes in heavy precipitation events are 554 

much more consistent with the CCPA throughout all lead times. 555 

 556 

 557 
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Figure 12. The Day-1, Day-5, Day-10, and Day-15 (Row-1 to 4, respectively) biases for 558 
24-h precipitation from the (5 member) raw (GEFSv12_p2, left panels) and calibrated 559 

(GEFSv12_p2-bc, right panels) ensemble mean forecasts over the CONUS. 560 

  561 

 562 

 563 

Figure 13. The Day-1, Day-5, Day-10, and Day-15 probability distributions of 24-h 564 
accumulated precipitation for CCPA (black lines), raw (red lines), and bias-corrected (green 565 

lines) 5-member ensemble mean forecasts over the full CONUS domain.  566 
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 567 

 568 

 569 

 570 

 571 

Figure 14. The days/year with 24-h precipitation exceeding 50 mm over the CONUS for raw 572 
(GEFSv12_p2, Column 1), bias-corrected (GEFSv12_p2-bc, Column 2) 5-member ensemble 573 

mean forecasts for Day-1, Day-5, Day-10 and Day-15 and CCPA (Column 3). 574 

 575 

6. Summary 576 

For the first time, the simultaneous generation of a multi-decade reanalysis and 577 

reforecast dataset became part of an operational GEFS implementation. The reforecast dataset 578 

is particularly important, considering the extension to subseasonal forecast time scale in the 579 

current GEFSv12. Statistical postprocessing with a long-term training sample of the reforecast 580 
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has become a routine part of making subseasonal operational outlooks due to the larger forecast 581 

errors that exist at longer lead times. The dataset is being used to support several stakeholders 582 

in developing their operational products across many time scales. This large volume dataset is 583 

easily accessible by both the stakeholders and public users from the NCEP local machines and 584 

two public websites. Doubtlessly, this will further facilitate analysis and contributions to model 585 

developments. 586 

The performance of several selected weather elements, hurricane track, and MJO in the 587 

GEFSv12 reforecast were compared with the GEFS_SubX and GEFSv10 reforecasts. The  588 

error characterization of the 2-m temperature forecast was analyzed. Overall, the forecast skill 589 

for the GEFSv12 is similar to or better than the GEFS_SubX in 500-hpa geopotential height, 590 

precipitation, and MJO forecasts. It is also worth mentioning that the degree of some of these 591 

improvements is less than those resulting from the change from the GEFSv11 to GEFS_SubX. 592 

It should be emphasized that when the GEFS_SubX was developed, considerable efforts were 593 

made to enhance the stochastic physics, surface boundary conditions and convection. These 594 

model enhancements resulted in substantial improvements in model performance compared to 595 

the GEFSv11 (Zhu et al. 2018; Li et al. 2019, Guan et al. 2019). Therefore, when using 596 

GEFS_SubX as a benchmark to evaluate GEFSv12_p2, it should be noted that the 597 

GEFS_SubX is a difficult model to outperform substantially. The two sets of nearly three 598 

decades of reforecast data (GEFSv10 and GEFSv12) provide a good opportunity to address 599 

the impacts of the model and analysis on hurricane track forecasts. The initial analysis plays 600 

an important role in the accuracy of the track forecast for lead times shorter than about 5 days. 601 

The improvement in the model itself may be a potential direction to take in reducing the track 602 

forecast error for lead times longer than 5 days, which is a persistent challenge for the NCEP 603 

GEFS.  604 

In comparison with the GEFS_SubX, the GEFSv12 substantially reduces the warm (cold) 605 

bias over the NA domain during the boreal warm (cold) season. However, the cold bias for the 606 

cold season in the GEFSv12 is still considerable. Further analysis of the error characteristics 607 

demonstrates that this bias is snow-dependent, emphasizing the importance of 2-m temperature 608 

calibration for GEFSv12 based on the existence of snow cover. The multi-decadal reforecast 609 
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dataset was also demonstrated to be very useful in calibrating the precipitation and capturing 610 

extreme precipitation events.     611 

 612 
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