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Objectives

* Describe some of the tools used by the data assimilation team
for verification.

* OQOutline the data assimilation components for the Q3FY16
GFS/GDAS upgrade.

* Presentverification for each component to ensure that they are
implemented correctly.

— Alow resolution testing environment will be the primary means for
showing this.

— Results from clean tests will be shown for low resolution experiments.

— Results from the GFSx will then be examined to see if we observe the
same impacts.



Tools

e Standard VSDB Package
* Minimization Monitor

e Radiance Monitor



Global Climate and Weather Modeling Branch
Environmental Modeling Center
National Centers for Environmental Prediction

NCEP/EMC Global Model Experimental Forecast Performance Statistics

¢ The site displays verification statistics for global NWP forecasts. All data used are on the GRIB G2 (2.5x2 5 degree) grid.

6o | o The regions referred to are: G2 (GLB): Globe NHX:20N-80N SHX: 20S-80S TRO: 20S-20N PNA: Pacific North America, 180E-320E, 20N-75N
N60: 60N-9ON  S60: 60S-90S NPO: N Pacific SPO: S.Pacific NAO:N.Atlantic SAO: S. Atlantic CAM: Central America NSA: N. South America
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¢ Pattern correlations for all NWP models are computed using anomalies respective to a 30-vear (1959-1988) climatology of the NCEP/NCAR reanalysis.
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Minimization Monitor

* QOur variational data assimilation system minimizes a cost function to find the best analysis
that fits both the previous model forecast and observations.

GSI Minimization Plots
Select Source:

| 4devbs15 |

Plot Type:

Initial gradiant/Final gnorm
Gnorm last 4 cycles
Gnorm single cycle
Reduction single cycle
Costs single cycle

Plot statistics
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The cost functionis minimized iteratively, striving to get the
gradient as close to zero as possible.

Cycles with gradients much larger than zero did not minimize
properly and should be examined in greater detail.

. 2015071200
4devbs15 Final gnorm fgnorm: 2.38746E-2
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Minimization Monitor

* The gradient for a single cycle can be plotted by iteration.
e We want to see a smooth decrease towards zero for the full amount of iterations.

GSI Minimization Plots
Select Source:

| 4devbs15s e |

Plot Type:

Initial gradiant/Final gnorm
Gnorm last 4 cydes
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Costs single cyde
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Minimization Monitor

* Each component of the cost function can be examined for a single cycle, plotted by

iteration.

GSI Minimization Plots
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Radiance Monitor

* Summary statistics are available for each sensor.

* Can examine the guess vs analysis, the parallel vs operational, number of observations,

bias correction coefficient, contribution to penalty...

Source: 4devb

Platform: | METOP-A HIRS/4 | Summary Plot hirs4 metop-a
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Radiance Monitor

* Time series statisticsare also available for each sensor.
* Can examine the same values as the summary statistics as well as individual correction
terms and statisticsby scan angle.

Source: ddevb

Platform: [NOAA-18 AMSU-A AMSUA N18, Time Series Plot

Statistic | Number of Observations v
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Q3FY16 Package
New Theoretical DA Components

e 3D to 4D ensemble covariances
* |ncrease in ensemble contribution from 75% to 87.5%

* Reduction of horizontal localization length scales in the
troposphere

 Removal of additive inflation

 Code optimization

* Limit moisture perturbations for improved minimization
* Inclusion of ozone cross-covariances



Q3FY16 Package
New Observational DA Components

 Removal of time component for data selection
* 4D thinning of AMVs
* Aircraft temperature bias correction

e All sky microwave radiances
e CRTM upgrade

11



Ensemble-Variational Methods

* En-Var: background error covariance (P?, updated using
EnKF and propagated through an ensemble, for e.g.) is used
in the variational solver.

* 3D-EnVar: P"is assumed to be constant through the
assimilation window (current NCEP implementation).

* 4D-EnVar: P® at every time in the assimilation window
comes from ensemble estimate (no TLM needed).

* En-4DVar: static PPis replaced with ensemble estimate (or
hybrid) at the beginning of the assimilation window, but
propagated with tangent linear model (and its adjoint) within
the window.

Courtesy: Jeff Whitaker



4D EnVar: The Way Forward?

* Thisupgradeis movingto the Hybrid 4DEnVar
* Natural extensionto operational Hybrid 3DEnVar

— Uses variationalapproachwith alreadyavailable 4D ensemble perturbations
* No need to develop or maintain TLM and ADJ models

— Makes use of 4D ensemble to perform 4D analysis

— Modular, usable across a wide variety of models (NGGPS dycore replacement)
* Highly scalable and computationally inexpensive (w.r.t. 4DVar)

— Aligns with technological/computing advances

— Estimatesof improved efficiency e.g. at Env. Canada (6x faster than 4DVAR on
halfas manycpus)

 Combinesbest aspects of variational and ensemble DA algorithms

* Othercentersexploring similar path forward for deterministic NWP
— Canada(replaced 4DVAR), UKMO (potentially replace En4DVar)

Courtesy: Daryl Kleist



4D Hybrid, Low Resolution

_ Current 3DHybrid Proposed 4DHybrid

. : 25% static; 12.5% static;
Static/ Ensemble Weights 75% ensemble 87.5% ensemble
Additive Inflation 5% 0%

: Trgpospherlc % of current 3D Hybrid
localization length scales

Test Configuration
* T670L64 deterministic GFS with 80 member T254L64 ensemble with
fully coupled (two-way) EnKF

* Incremental normal mode initialization (TLNMC) on total increment

 Multiplicative inflation and stochastic physics for EnKF perturbations
* Full field digital filter

Courtesy: Rahul Mahajan



Courtesy: Rahul Mahajan

500 hPa Die Off Curves, Low Resolution
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3D Hybrid (current operations) to Hybrid 4D-EnVar yields improvement that is
about 75% in amplitude in comparison from going from 3DVar to 3D Hybrid



Courtesy: Rahul Mahajan

RMSE Summary, Low Resolution
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Minimization, GFSx
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Minimization, GFSx

We examined the
components of the
cost function for a
single cycle.

The negative/
excessive moisture
constraint (purple)
was several orders
of magnitude larger
than typically seen
(compare to next
slide).
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Minimization, GFS

Operational GFS did
not suffer the same
problem.

In the GFSx, some
moisture
perturbations were
being sent from the
model that were
beyond realistic
bounds, >200%.

A fix was included to
limit the moisture
perturbationsto
realistic values
(+100%).
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Multivariate Ozone, Low Resolution
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Ozone has previously been assimilated univariately.

We now include the cross-covariances between ozone and the
other variables.
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Multivariate Ozone, GFSx
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Ozone has previously been assimilated univariately.

We now include the cross-covariances between ozone and the

other variables.
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Multivariate Ozone, GFSx

* Ozonein the GFSx was compared with observations
* Shown for SBUV/2

* Aug 15-0ct15, 2015

e Overall neutral to positive impact

A couple levels showed

Some levels showed a large positive impact. .
a negativeimpact.

avgomg time series from para (red) and gfs (green) avgomg time series from para (red) and gfs (green) avgomgq time series from para (red) and gfs (green)
_| Global .| South Pole : «| Global
6 mb 2] 15 40 mb
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Data Selection in 4D, Low Resolution

Ohbservation Count

* In the 3D context, data towards the analysis time was preferentially chosen.
* With the background ensemble at each hour, this is no longer necessary.

* The time component of the data selection procedure has been removed.

* Data is more evenly distributed across the window.
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Low Resolution
Experiments

RMSE O-F (2013071500-2013081200)
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Not expectedto have a large impact globally. First step towards4D thinning.



Data Selection in 4D, GFSx

* In the 3D context, data towards the analysis time was preferentially chosen.
* With the background ensemble at each hour, this is no longer necessary.

* The time component of the data selection procedure has been removed.

* Data is more evenly distributed across the window.
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4D Thinning of Hourly AMVs

* Hourly products replaced 3-hourly products at
EUMETSAT and JMA.

* Current 3D algorithm would not take advantage of
the additional information in time.

e We can extract information on the time evolution
from hourly observations.

* New 4D thinning configuration has 2-hour
observation bins.

Courtesy: Xiujuan Su
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Data Count Change by Data Type

2013102300-2013120218

* 242(MTSATVIS): 69488/338366=21%

« 252(MTSATIR) 395046/2436233=16%

e 250(MTSAT WV)275144/1529824=18%

* 243(METEOSAT-7VIS) 96543/376100=26%

* 243(METEOSAT-10VIS) 406730/340972=119%
* 253(METEOSAT-7IR) 269414/426286=63%

e 253 (METEOSAT-101R) 843564/554759=152%

e 254 (METEOSAT-7 WV) 456858/1320300=35%

* 254(METEOSAT-10WV)760661/473751=161%

MTSAT and METEOSAT-7 were not previously thinned. = Decrease in data count
METEOSAT-10 was previously thinned but in 3D. = Increase in data count

Courtesy: Xiujuan Su



4D Thinning of Hourly AMVs

* Low Resolution Experiment

e 2Seasons: 2013102200to0 20131205, 20140601 to 20140716
* Results consistent between seasons, only summer shown
* Improvement in winds, other variables are neutral

Wind RMS at 850mb and 200mb in the northern hemisphere
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Aircraft Bias Correction

 Several studies have noted that the aircraft data contains a warm bias at
around 200 hPa.

* Follows the variational radiance bias correction (Derber and Wu 1998, Zhu et
al 2013) and the aircraft bias correction of ECMWEF (Isaksen et al 2012).

* Aircraft temperature bias correction is conducted simultaneously inside the
analysis system as the analysis is produced.

* Bias coefficients are aircraft tail number dependent for AMDAR data, but
one single bias coefficient for AIREP data.

* Tensioned spline method is used to calculate aircraft vertical velocity (Purser
et al 2014), used in defining bias predictors, which mitigates missing time
information.

29
Courtesy: Yanqgiu Zhu



Aircraft Bias Correction, Low Res.
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Aircraft Bias Correction, Low Res.

Before BC
After BC

Aug 17-Sept17,2012
NUS-AMDAR
Aircraft EU6900

Data Count Data Count

Data Count

Observation Minus Forecast (OmF)

Cruise Level

Ascending

Descending

31
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Aircraft Bias Correction, GFSx

Observation Minus Forecast (OmF)

Before BC 2 Cruise Level
After BC ol mm
i Wmih\ll“h ahiln 115
Sept1—0Oct 31, 2015 .
NUS-AMDAR i- l H _
Aircraft EU6900 ) il ‘ ‘ Ascending
mo_p_ooallaas] ...lllﬂ..||.ml|_!|h.|u”| i “hh" i [ PP
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Aircraft Bias Correction, GFSx
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Column Cooling Concern

RMSE Bias
R I TO GFS Temp trmse GLOBAL 00 20151101-20160126 Temp tbias GLOBAL 00 20151101—-20160126
eda ime X | -1
b a 100 prédevb  a

11/01/2015 -01/26/2016

* It was noted that the 00 Hour -
GFSx had a cooler
troposphere with
forecast degradation
when compared to raobs Tégmpmtrm;e GLosa. 120 20151101-20180178 Tomg i Lo 120 20151101 -z0v801z8
through 120 hours. R .

* Is this due to the cooling
of the aircraft bias

correction?

120 Hour ..




Column Cooling Concern

Low Resolution
06/01/2015 -07/11/2015

Previous clean low resolution
experiments show substantial
cooling where the largest
warm bias occurs but the
cooling extends throughout
the column at the 00 hour.

Amount of cruise level data
overwhelms the rest.

However, forecast skill is not
degraded and the cool bias is
significantly reduced by 120
hours.

Temp trmse GLOBAL 00 20150801-—20150711 ggemp tbias GLOBAL 00 20150601—20150711
4 3

RMSE Bias
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i

50
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Column Cooling Concern

* This type of aircraft bias correction was initially implemented at ECMWF.

* Their results showed similar column cooling.

 OQOurimplementation seems to be correct.

Pressure (hPa)

Aircraft temperature departures

150 -
200 -
250+

Analysis departures

wea Without aircraft bias correction
e With aircraft bias correction

Background departures

= Without aircraft bias correction
== With aircraft bias correction

Isaksenetal 2012
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Column Cooling Concern

RMSE Bias

Temp trmse GLOBAL 00 20150601-20150711 Temp tbias GLOBAL 00 20150601-20150711
L]

Retrospective GFSx .
06/01/2015-07/11/2015

* Low resolution results are not
directly comparable to real 00 Hour~
time GFSx figures due to
potential seasonality

* Looked at the GFSx N~ - &L
retrospective for same period — fretmee Somn o Toey oo fome s 509N 120 2015060120150
as our low resolution test e | s

* We see additional cooling at
the surface that was not
present in our test.

120 Hour-.

e Due to the land surface
change?




All Sky Microwave Assimilation

* Previously, clear sky data and radiances affected by thin clouds
only were used

* The all sky approach includes the addition of microwave radiances
affected by thick, non-precipitating clouds

e AMSU-A channels 1-5, 15

* New all-sky radiance bias correction strategy (Zhu et al 2014)
e Situation-dependent observation error inflation

 AMSU-A observation error re-tuned

 Symmetric observation error assignment (Geer et al 2011)

e Normalized cloud water control variable and new static
background variance

* Individual hydrometeors as state variables 38
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Clear-sky OmF VS. All-sky OmF

........................................

808 60E 120E 180 120w 0w 0 BOE 120E 120
by I 4 I
—-12.8 -9.86 —6.4 -3.2 9.6 12.8 16 16,2 —-1285 —49.8 —6.4 —3.2 0 B.4 9.6 12.8 16 19.2

90N

= More data coverage: Thick clouds
that are excluded from clear-sky
assimilation are now assimilated under
all-sky condition

=Rainy spots are excluded from both
conditions

=

Cloud Water

AMSUANOAA19 CH100Z 20131029

03

BUE 1206 120 120w BOW i

0.05 G 0.15 0.2 0.3 Q.4 0.5 Courtesy: Yanql‘u Zhu



All Sky Assimilation, GFSx

Source: ddevb

Summary Plot amsua n18
Platform: | NOAA-18 AMSU-A ~ -

Valid: 2016011200

Compare With:
[ operational GDAS
Data Sets: . .
a me Number of Observations Passing QC
[ ges data
[anl data 1E+4 — ~~._ ® chanassim
B chan not
Last 4 Cycles assim
(12016011200 1E+3 ges
(12016011118 2016011106
(12016011112 1E+2 —— cmp_ges
2016011106 2016011106
1E+1
1E+0 W ] ] | | | ] | ] | | | ] [ ] | | | L] [ ]
3 & 9 12 15
Chanhne!

More observations are assimilated from the channels that now allow cloudy radiances.
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T670/T254 All-sky Microwave Radiance Assimilation in 3D EnVar
Impact on RH at 850hPa

Anomaly Correlation at 500 hPa
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o.a
o.8 CLESKY ac.
ALLSKY &,
o.7
0.8
0.5
o4
NH
0.003
Difference w.r.t. CLRISKY
0.002 \
0.001 e
\
o I —
—0.001L \
—0.002 \-\
AC differences ocoutside of coutline bars
_0.003 Lore mismiwicant at the 05% gomricenss leve:
N o ) 98 1442
Forecast Hour
AC: HOT PSO0 G2/3HX O00Z, 20131027 —20131201
1
0.9 4
0.8 4 CLRSKY A5,
ALLSKY &5,
0.7 4
0.8
0.5
0.4 4
237 S H
Difference w.r.t. CLRIKY
0.01% - ~]
0.008 4 /
0.004 4
o
AT AifL T ESEE )
s L Lt e e

0

48 a8 144

Forecast Hour

ClerSlcy SF.1a7

1

———

a BOE

AllSky —ClrSky

120E 180
—1.48581

e ——

Cimees S

EQ
308 |
803 | -
sos
[ BOE 1208 180 120w BOW [
-l l | |
—50 —40 —@0 -—=0 —18 —& = 1o =0 L] 40 50
Ol Slhoyr 2758 _42S8
T

o BORE

AllSky —ClrSky

120E 180

—0. 0515921

——— R

Courtesy: Yanqgiu Zhu



All Sky Assimilation, GFSx

901 +

BON A &
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All Sky Assimilation, Low Resolution

Bottom left:
Equivalent to
OPS

Top right:
4D package
with clear sky

Bottomright:
4D package
with all sky

GDAS Analyals horementa, Cloud Water (pprmg)
[OO os 12 I.E] Cyoles, OLJunZ0l5 ~ O08JunzZols

A—B, pralhddeva

30N GON 603 303

-5 -4 -3 -8 -1 —0L-0250.25 0.5

Previous system had
a positive bias for
the cloud water
increments.

The All-Sky Package
reduces this bias.
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All Sky Assimilation, GFSx

GDAS Analyails horementa, Cloud Water (pprmg)
[OO ag 12 1ﬂ] Cyolas, 0ADacZ0LlE5 ~ 13DeaZ0l5

A—B, prd4adevb

'T ‘ 'u}“

5 803 808

—4.8 —3.86 —27 —1.8 —0.8-0.450.22H.225 0.45 0.8

1.8

Eq &ON 80N

Bottom left: OPS

Top right: GFSx

2.7 3.8 4.8
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CRTM

e Community Radiative Transfer Model
» Diffuse surface reflection added for non-precipitating clouds
e CRTM input wind direction bug fix

* Updated surface emissivity component from FASTEM-5 to
FASTEM-6

 Minor changes to the interfacing

A series of tests were performed to validate the CRTM. Another
radiative transfer model, RTTOV, was incorporated into the GFS
for direct comparison. This allowed for some bugs to be
discovered and corrected.
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FASTEM Reflection Correction

* Emily Liu provided plots that indicated a cold bias in simulations when
applying the CRTM for non-precipitating cloudy atmospheres

« The CRTM team identified that the source of this bias was due to the
absence of a downwelling diffuse surface reflection contribution for non-
precipitating cloudy atmospheres

* The diffuse surfacereflection component for non-precipitating cloudy
atmospheres was turned on for CRTM 2.2.X releases. Emily Liu confirmed
that this removed the CRTM cold bias for simulations of AMSU-A surface
sensitive channels.

46
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CRTM: Wind Direction Fix

Surface Emissivity Difference (RTTOV-CRTM) FASTEM-6 Surface Emissivity Difference (RTTOV-CRTM) FASTEM-6
I £ 120 190 120 2 I I £ 120 190 120 2 I
W \ i
o" ..... . eoses o+ e « o a8 cg" ........... S
1 v ”i ‘ \ \" ‘k k
rIR\Y \
of ' ......... ) ..... T‘{‘( ,‘..,.. :\ ..... \ ‘\\. ...................... o off . S f...icc 0 Jeeeeed RSP Pooisel Jeeeeed BB lescseml  feesesey  dtescsed  specco NN Leceee) esese =
1 ke A L |
¢ A
s f/"” .................... TR
1 Before wind direction fix il After Wlnd dlrectlon fix I
= =) 0 =)
Ch 02 Mean -6.0e-06 STD 9.0e-04 Min -5.8e-03 Max 5.7e-03 Nobs 66188 Ch 02 Mean -8.9e-06 STD 5.6e-05 Mln -4.0e-04 Max 1.4e-04 Nobs 66188
[ T [ T i
-5.8e-03 -4.3e-03 -2.9e-03 -1.4e-03 0.0e+00 1.4e-03 2.9e-03 4.3e-03 5.8e-03 -4.0e-04 -3.0e-04 -2.0e-04 -9.9e-05 0.0e+00 9.9e-05 2.0e-04 3.0e-04 4.0e-04

* Input wind direction to the CRTM in the GSI’'s CRTM interface was
incorrect. Westerly and easterly winds were previously input to the
CRTM as having the same direction.
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Points of Contact

Point of Contact

Monitoring Tools

4D
Optimization/Minimization
Multivariate Ozone

4D Data Selection

AMVs

Aircraft Bias Correction

All Sky Assimilation

CRTM

Ed Safford
Rahul Mahajan
John Derber
Cathy Thomas
Cathy Thomas
Xiujuan Su
Yangiu Zhu
Yanqiu Zhu

Paul van Delst
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