GENERAL DESCRIPTION OF THE WEATHER FORECAST PROCESS WITH EMPHASIS ON FORECAST UNCERTAINTY

Zoltan Toth

1

Environmental Modeling Center NOAA/NWS/NCEP USA

Acknowledgements: Steve Lord, David Helms, Geoff DiMego, NWS/OST, John Derber

http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html

THE MAKINGS OF A WEATHER FORECAST – WHAT WE NEED FOR PREPARING A USEFUL FORECAST?

- Assess current weather situation
 - Before we can look into future, understand what is happening now
 - "Initial condition"
- Digest observational information
 - Bring observed data into "standard" format
 - "Data assimilation"
- Project initial state into future
 - Based on laws of physics
 - "Numerical Weather Prediction" (NWP) model forecasting
- Apply weather forecast information
 - Statistical post-processing
 - "User applications"

OBSERVING THE CURRENT STATE – SURFACE-BASED SYSTEMS

Land surface synop station (In situ)

Land-based radar

Great advances in Remote sensing

Ocean buoy (In situ)

OBSERVING THE CURRENT STATE – SPACE-BASED SYSTEMS

Enormous technological advances New observing platforms New observing instruments

Vast increase in number of observations

OBSERVING THE CURRENT STATE – REMOTELY SENSED "IMAGES", INSTEAD OF "DATA POINTS"

Global Observations 12 UTC 6 hour window

Global Rawinsondes

Aircraft Wind/Temp Reports

Polar Satellite Radiances (2 sat)

Marine Obs -- 12 Hour Total

DMSP Imager – Sfc winds/PW

Satellite Winds

OBSERVING THE CURRENT STATE – HOW LARGE AN AREA WE NEED TO OBSERVE?

- Coherent weather systems (fronts, cyclones)
 - Travel with relatively low speed (<50 km/hr)
- Influence of observations spreads through "downstream development"
 - Can advance at speed of upper level jet stream (~150 km/hr)
- For extended-range prediction, large areas must be observed

UNCERTAINTY IN ASSESSING CURRENT WEATHER

Despite great advances,

uncertainty in state of atmosphere remains

- Not all aspects of atmosphere observed
 - Coverage is intermittent in
 - Time
 - Space
 - Not all variables observed
- Existing observations are not perfect
 - Instruments have different kinds of errors:
 - Random
 - Systematic
 - Point-wise measurements not representative for model grid-boxes

HOW OBSERVATIONS ARE USED? DATA MUST BE MOLDED INTO STANDARD FORMAT ENORMOUS TECHNOLOGICAL EVOLUTION

Computing machines (1950s)

Supercomputers

"Weather

factory" of

the past:

Manual

analysis

3.7 Billion Times Faster in 50 Years

HOW OBSERVATIONS ARE USED? DATA MUST BE MOLDED INTO "MODEL" FORMAT

Data assimilation combines observed & model forecast data

- Raw data
- Intermittent
- Noisy
- •Not suitable for numerical model

EP/TOMS Total Ozone Mar 21, 2001

- Continuous
- •Smooth
- •Provides model initial state

FNL Total Ozone analysis (DU) Valid: 00Z21MAR2001 to 18Z21MAR2001

HOW CURRENT STATE GETS PROJECTED INTO FUTURE? NUMERICAL WEATHER PREDICTION

Synoptic forecasting of past

Use Newton's laws of physics, plus thermodynamics

Numerical model calculations on 3-dimensional grids

STATUS OF WEATHER FORECASTING

5) Trust of society earned

4) More user friendly products

NO LIMITS TO WEATHER FORECASTING?

1) Observing techniques improve

3) Numerical models become more sophisticated

LIMITS IN WEATHER FORECASTING

Initial state is imperfect

- Problems with observations and data coverage
- Problems with assimilating the data
 - Imperfect statistical and numerical forecast methods
- Random (and systematic) errors

Numerical model is imperfect

- Limited resolution
 - Processes represented in model must be truncated
 - Spatially
 - Temporally
 - Physically
- Systematic (and random) errors

• Atmosphere is chaotic

- Small errors amplify rapidly
 - Forecasts lose skill with increasing lead time
 - Loss of skill is case specific

THOUGH SKILL IN FORECASTS EVER INCREASES -

LIMITS PUSHED FURTHER OUT IN TIME

LIMITS REMAIN - NEED PROBABILISTIC APPROACH

More predictable

HOW TO DEAL WITH FORECAST UNCERTAINTY?

- No matter what / how sophisticated forecast methods we use
 - Forecast skill limited
 - Skill varies from case to case
- Forecast uncertainty must be assessed by meteorologists

Do users need to know about uncertainty in forecasts?

THE PROBABILISTIC APPROACH

How forecast uncertainty can be communicated?

SOCIO-ECONOMIC BENEFITS OF SEAMLESS WEATHER/CLIMATE FORECAST SUITE

THE MAKINGS OF A WEATHER FORECAST – EVER IMPROVING, BUT ALWAYS IMPERFECT

- Assess current weather situation
 - Before we can look into future, understand what is happening now
 - "Initial condition"
- Digest observational information
 - Bring observed data into "standard" format
 - "Data assimilation"
- Project initial state into future
 - Based on laws of physics
 - "Numerical Weather Prediction" (NWP) model forecasting
- Apply weather forecast information
 - Statistical post-processing
 - "User applications"

REPRESENT FORECAST UNCERTAINTY – PROBABILISTIC FORMAT