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ABSTRACT 

Errors in numerical forecasts arise due to errors in the initial conditions and the 
discrepancies between the model and nature (and may amplify due to chaos) In a 
quest to reduce forecast errors, initial conditions for forecast integrations are 
traditionally chosen to be as close to nature as possible. When such an initial 
condition (analysis) is used to initialize an imperfect model that is systematically 
different from nature, the model will drift from a state on or near the attractor of 
nature to a state near the model’s attractor. Such a drift will induce forecast errors.  

To reduce drift-induced errors, a mapping paradigm is proposed where a link (i.e., 
mapping vector) is established between states of nature and corresponding states 
on (or near) the model attractor. Observations from near the attractor of nature are 
moved with the mapping vector to the vicinity of the model attractor. Data 
assimilation is performed with the mapped observations and the mapped initial 
conditions are then used to initialize model forecasts to be used in the next 
assimilation cycle. For practical applications, the mapped initial conditions as well as 
the forecasts are “remapped” back to be close to nature using the mapping vector 
with an opposite sign. 

The mapping paradigm is demonstrated in a setting where a simple Lorenz model is 
used to generate “nature” and a modified version is used as an imperfect model. The 
mapping vector is first estimated as the difference between the climate mean of 
nature and the model. Model-related errors in the Lorenz system with the mapping 
algorithm are reduced by 67%, leading to improvements in the quality of both the 
numerical forecasts made with the imperfect model and the analyses produced with 
the forecasts. Considering that the mapping vector may be a function of phase 
space location or no long-term climatology for nature or the model may be available, 
an adaptive approach that can be used with a relatively small amount of data was 
also introduced and successfully tested. 
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Motto: Reflection is a process where a step back takes you closer to reality 

 1. Introduction  

The quality of numerical forecasts generated by a given system is a function of the 
quality of the model and the initial condition. According to traditional thinking, 
forecast errors can be reduced either by increasing the realism of numerical models 
(i.e., how closely the model resembles nature) or by bringing the initial conditions 
closer to nature. In chaotic systems like the atmosphere and many other natural 
systems, the quality of the initial conditions is particularly important since initial 
errors contribute to a loss of predictability, and the actual lead time at which this loss 
occurs is determined by the size and structure of initial errors (Lorenz 1963, 1982).  

The conventional paradigm for numerical forecasting is based on the above 
conventional wisdom and consists of the following steps: 

1) Estimate the state of nature as truthfully as possible (analysis); 
2) Run numerical model forecasts from the analysis field; 
3) Statistically assess the systematic error in the numerical forecasts; 
4) Remove the estimated systematic error from the forecasts. 

Modern data assimilation (see, e.g., Kalnay 2002) combines observational data with 
either raw or bias-corrected short-range forecasts using analysis-forecast cycles of 
steps 1-2 or 1-4 above, respectively. 

It is argued in this paper that the use of the conventional forecast paradigm, to be 
called the “fidelity paradigm” for its use of initial fields as truthful to nature as 
possible, is justified only in the special case when perfect models are used for 
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prediction. Such situations arise only in controlled scientific experiments. In the 
general case when predictions are made with imperfect models (and all practical 
applications fall into this category) the generally accepted fidelity paradigm may not 
be valid.  

As a simplified example, consider a numerical model as “nature” and a modified 
version of it as a tool used for predicting nature (i.e., the imperfect “numerical model” 
of “nature”.) The attractors of these two systems are generally different. When an 
imperfect numerical model is started from an exact state of nature (i.e., no initial 
error in the traditional sense, see Fig. 1) the forecast will diverge from nature. This 
divergence is a transient behavior and is exclusively due to model imperfection (i.e., 
the difference between nature and its model) and is often referred to as model drift 
(see, e.g., Toth and Vannitsem 2002).  

The working hypothesis of this study is that the initial drift is associated with the 
choice of an initial state that is on or near the attractor of nature. Such states are 
obviously not on the attractor of an imperfect model and will necessarily lead to a 
transient drift. It is further assumed that drift, if present in a numerical forecast, will 
induce additional forecast errors that would not emerge had an appropriate initial 
state on or near the model attractor been chosen. 

The main goal of this paper is to explore whether drift-induced forecast errors can be 
reduced by “mapping” an initial state from nature close to the attractor of a different 
though similar system (i.e., a numerical model of nature). Mapping is defined here as 
an operation that links each natural state with a state near the model attractor, when 
used as an initial condition leads to a model forecast that best reproduces the time 
evolution of nature. Once a forecast is made from a mapped initial condition, it can 
be remapped back from being near the model attractor to being near that of nature 
by using the mapping vector with an opposite sign (Fig. 2). The expectation is that if 
such a mapping can be established and used for initializing numerical forecasts, 
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errors induced by model drift can potentially be reduced, leading to better forecast 
performance.  

The application of the mapping paradigm for data assimilation and numerical 
forecasting starts with an estimation of the mapping vector connecting the attractors 
of nature and the model. This is followed by the steps below: 

a) Map the observations from the vicinity of nature to that of the model attractor; 
b) Assimilate the mapped observations; 
c) Run the model from the mapped initial condition; 
d) Remap the analysis and forecast back to the phase space of nature (Fig. 3). 

The “fidelity” paradigm assumes that nature and the forecast model are the same 
and, therefore, starts the model with a state as close to the state of nature as 
possible. This assumption is true only in case of a perfect model (that exists only in 
simulated   numerical experiments.) By contrast, the “mapping” paradigm recognizes 
that numerical models of any system in nature are only imperfect images of reality 
and searches for a mapping that connects the states observed with the 
corresponding states in a model. The mapping is then used to find the model state 
that best represents a state of nature on or near the model attractor for model 
initialization.   

Tacitly assuming that numerical models are perfect, the traditional paradigm strives 
at finding initial conditions that match nature as truthfully as possible. In contrast, the 
mapping paradigm explicitly recognizes the systematic difference between 
corresponding states of nature and a numerical model of it (i.e., the mapping vector) 
and considers traditionally derive initial states as, in excess of random type of initial 
errors, also burdened with an additional error that at initial time equals to the 
mapping vector. This initial error (i.e., the mapping vector) is the asymptotic (i.e., 
lead time independent) systematic difference between nature and its numerical 
model. 
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Data assimilation cycles with the mapping paradigm consist of steps a-c above. Step 
d is used outside the cycles of data assimilation, and only when the results are to be 
used or evaluated in practical applications. And since modern data assimilation (DA) 
methods rely on short-range forecasts to propagate observational information in a 
dynamically consistent way in space and time, if mapping can reduce forecast 
errors, possibly it can also improve the fidelity of the analysis to nature.  

After a brief historical overview (Section 2), the numerical model and data 
assimilation tools used in this study will be presented in Section 3. The mapping 
paradigm will be demonstrated with a simple Lorenz model, using two different 
methods for the estimation of the mapping vector in Sections 4 and 5, respectively. 
Preliminary conclusions and a discussion are offered in Sections 6 and 7, 
respectively. 

 

2. Historical overview  

Accurately reproducing nature in numerical analyses has been a top priority for data 
assimilation research for decades. Considerable efforts have been made to bring the 
analysis fields as close to nature as possible. This included not only reducing 
random errors in analysis fields that are due to observational or other noise, but also 
efforts to eliminate systematic errors arising due to the use of imperfect models for 
generating short-range forecasts. Traditionally, model-related systematic errors have 
been dealt with one of the following two approaches. First, systematic errors in 
short-range forecasts used as background fields can be estimated, and then 
removed (see, e.g., Dee and Da Silva 1998, Dee and Todling 2000 and references 
therein). Alternatively, a special “model error“ covariance matrix can be introduced in 
data assimilation algorithms. This allows the analysis to deviate from the background 
field and resemble more the observational data in directions assumed to be 
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associated with model-related errors (see, e.g. Zupanski and Zupanski 2006). In 
either case the analysis is systematically moved from states that the model prefers 
toward nature. 

While the reduction of random errors in initial fields is certainly necessary in reducing 
the growth of forecast errors in chaotic systems, fighting the emergence of 
systematic differences between nature and the assimilating model (and thus the 
analysis fields) as usually done in accord with the fidelity paradigm can, according to 
the “mapping” paradigm, be counterproductive. While the mapping paradigm, to our 
knowledge, has not yet been presented in the literature in a comprehensive way,a 
few attempts to deviate from the prevailing “fidelity” paradigm must be noted. 

First we refer to research related to what is called representativeness errors. 
Numerical models, even if otherwise very similar to nature, cannot represent 
features whose spatial and/or temporal scales are finer than the resolution of the 
model. Atmospheric observations from a convective system with a scale of 1 km, for 
example, may be very misleading with respect to the state of the flow on the larger 
meso- (10 km) or synoptic (100 km) scales that a model can represent.  

It has been recognized that small-scale features that cannot be resolved by the 
assimilating model act as noise and will degrade the quality of DA and forecast 
products. Typically, DA schemes partially address this problem by increasing the 
value of observational errors in the algorithms so they statistically also account for 
errors associated with model representativeness (e.g., Lorenc 1986). The desire to 
exclude features from the analysis that are on scales that the assimilating model 
cannot resolve deviates from the fidelity paradigm, and is in line with the principles of 
the mapping paradigm. 

In a stimulating study, Schneider et al., (1999) explored components of the mapping 
paradigm in their experiments with a coupled ocean-atmosphere model. Ocean 
initial conditions were first derived using the fidelity paradigm. These ocean initial 
conditions were then mapped onto the phase space of an ocean model coupled with 
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an atmospheric model. This was done by taking the anomalies of the ocean 
analyses from their long-term climatology and putting these anomalies on the long-
term climatology of the ocean component of the coupled ocean-atmosphere model 
used. In their study, Schneider et al. (1999) reported some modest success with 
their approach. This is despite some technical issues that could have negatively 
affected their study, e.g., mapping the conventionally made analysis fields instead of 
mapping and then analyzing the observations; use of relatively small samples to 
estimate the climate mean of the analyses (used as a proxy for nature) and the 
model; lack of mapping for the initialization of the atmospheric component of the 
coupled ocean-atmosphere model; lack of re-mapping the forecasts into the space 
of nature (or the traditional analyses); and the use of a relatively short evaluation 
period.  

Another study of interest is that of Slater and Clark (2006). In their snow data 
assimilation work, they mapped observations of snow water equivalent from nature 
into their assimilating model’s phase space. First, the observations were converted 
into percentiles of their long-term climatological distribution, then the snow water 
equivalent value corresponding to the same percentile within the model’s long-term 
climatological distribution was determined.  

Slater and Clark (2006) found that the mapped quantities (percentiles) were spatially 
more homogeneous than the actual snow observations (which can vary greatly from 
site to site even at short distances) and made the interpolation within their DA 
scheme much easier. They cited this ease of interpolation as their primary 
motivation for using a mapping algorithm. Nevertheless, important elements of the 
mapping paradigm are utilized in their effort. Note, however, that Slater and Clark 
(2006) did all their modeling and evaluation work in the framework of the mapped 
observations, without ever going back to the space of real observations by 
remapping the forecast values, since they expect that their conceptual model can be 
better linked with hydrologic stream flow prediction models this way.  
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In a study on the assimilation of soil moisture, Reichle and Koster (2005), using a 
procedure similar to that of Slater and Clark (2006), matched the observed and 
forecast cumulative distribution functions (cdf) to “scale” the observed soil moisture 
information into the space of the variability of the soil component of a numerical 
Earth modeling system (percentile matching, see also Reichle and Koster 2004). 
The “scaled” observations were then successfully assimilated using an Ensemble 
Kalman Filter algorithm. The scaling algorithm used by Reichle and Koster (2005) is 
analogous to the mapping paradigm described in this paper. The concept of 
mapping, however, is applied only in the context of soil moisture data assimilation 
while using observed or traditionally analyzed data for the rest of the Earth modeling 
system. Reichle and Koster (2005) note that the moderate success of their data 
assimilation procedure hinges on many factors and that they could not evaluate the 
various aspects of their scheme separately. 

In a review study presented at a recent scientific meeting, Toth et al. (2005, personal 
communication) distinguished between two goals for data assimilation: replicating 
nature as truthfully as possible; and providing states that when used as initial 
conditions will lead to the best numerical forecasts. They suggested that when 
assimilating observational data with the aim of initializing imperfect numerical 
models, one “use only data to the extent it is representative in the modeling system”, 
and “do not correct for systematic model errors”. These are some of the principles 
that form the basis of the mapping paradigm described in the present paper. 

In a discussion similar to that of Toth et al. (2005), Baek et al. (2006) speculate that 
“in some cases, it might be desirable to let the forecast model state follow its own 
attractor”. Some of the approaches they tested in their recent data assimilation study 
with a simple model differ from the fidelity paradigm in that it allows the state used to 
initialize background forecasts to deviate from the observations reflecting model 
related errors. In particular, they remove the estimated forecast bias from the initial 
condition of the background in their data assimilation cycle; then they add the 
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estimated forecast bias back to the forecast fields prior to performing the data 
assimilation step.  

Baek et al (2006) linearly add various types of artificial biases into their background 
forecasts that they then attempt to estimate using a Local Ensemble Transform Filter 
(LETF, see Ott et al. 2004). For estimating the state of the system and the linear 
bias, they augment the state variables with additional sets of variables that can 
represent the various forecast biases. Baek et al. (2005) find that with an ensemble 
size equal to the augmented number of variables in their analysis domain, after a 
possibly long “settling time” the filter takes to converge, the linear bias can be well 
estimated.  

One of the methods of Baek et al. (2006) shares some important elements with the 
mapping paradigm described in this paper, i.e., the removal of estimated model 
related error from forecast initial conditions, and the addition of the same error to the 
forecast  itself following the integration. However, the methods tested in Baek et al. 
(2006) differ from those introduced in the present study. For example, the methods 
of Baek et al. (2006) are designed to correct a linear model bias and have not been 
tested in the general case of nonlinear model-related error behavior that typically 
emerges in real applications and are studied in the present paper. Also, they 
estimate model error as part of an ensemble-based data assimilation algorithm, 
potentially requiring an ensemble size equal to multiples of the size of the state 
vector, that is impractical for most real life applications, as compared to the easier to 
apply, dynamically based mapping vector estimation algorithms described in 
sections 4 and 5 in this study. 

 

3. Numerical modeling and data assimilation tools  

3.1 Numerical model 
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The mapping algorithm will be demonstrated using two versions of the Lorenz (1963) 
model: 

bzxy
dt
dz

xzyrx
dt
dy

xy
dt
dx

−=

−−=

−= )(σ

       (1) 

 

To represent nature, the standard parameter values are used: σ=10, b =8/3, and r 
=28. To create an imperfect model of nature, two aspects of the model used for 
nature are modified: (a) z is altered by a constant offset Δz;  

zmodel= z+ Δz,        (2) 

where the offset Δz = 2.5 (~5% of the standard deviation of z), and (b) by making 
σ=9. Change (a) shifts the model attractor in the z-direction of the phase space to 
create a bias in the model, while change (b) slightly modifies the general behavior of 
the model. Integrations were carried out using the 4th order Runge-Kutta numerical 
scheme with a time step of 0.01. 

 

3.2 Generation of nature and the forecasts 

The Nature representation was generated as a long integration of the original model, 
started with an arbitrary initial condition close to the attractor. After discarding the 
initial portion of the trajectory to reduce the influence of model drift, forecasts were 
initialized every 15th time step. Each experiment (except as noted) consists of 1000 
independent forecast cases. Forecast error, e, is defined as the distance (root mean 
square, or RMS error) between a forecast (xf) and the corresponding state of nature 
(xn) in phase space: . |||| nf xxe −=
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3.3 Model initialization 

Forecasts were started using three different initialization schemes:  

• No observational errors: where the model is started with an initial state taken 
directly from the nature run (Analysis (A) = Observations (y) = Nature (N)); 

• Replacement method: where observations (y) of all 3 model variables, 
generated by adding normally distributed random noise (with a zero mean 
and standard deviation equal to 2) to the nature run, are used as initial 
conditions (A=y); 

• Analysis from a 3DVAR scheme. 

The 3DVAR scheme (e.g., Kalnay 2002), given certain assumptions, optimally 
combines observations (y) and short-range forecast fields (xf, also called 
“background”) to produce an analysis (x) that is closer to nature than either the 
observations or the forecasts themselves. This is achieved by minimizing the cost 
function J: 

))(())(()()(2 11 xHyRxHyxxBxxJ TfTf −−+−−= −−    (3) 

where H, the observation operator, is a function that maps model values to the 
phase space of the observations, B and R are the background and observational 
error covariance matrices, and superscript T stands for transpose. 

Fifteen time steps was the chosen length for the background forecasts in this study. 
Since initial and model errors with the chosen size reach close to saturation values 
at around 750 time steps, this choice corresponds to a weather forecast (that 
typically loses predictability around 15 days) of about 7 hours. B was computed so 
that: 

Tnfnf xxxxB ))(( −−=         (4) 
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where xf is the forecast vector at the15th time step, and xn is nature valid at the 
same time, while the overbar denotes time averaging, in this case over 5,000 
analysis/forecast cycles from a time period independent of the evaluation period, 
using the traditional paradigm. Note that B, as defined above, is influenced by both 
initial value (chaotic) and model related (drift) errors. B was empirically tuned by 
multiplying it with a constant number to decrease the analysis and background 
errors over the evaluation period. Since observational errors were chosen to be 
independent with an expected value of 2, the observational error covariance R was 
set to be diagonal with the same value of 2. Note that the simplicity of the system 
used in this study allows for a better optimization of the 3DVAR method as 
compared to analysis applications in more complex systems like in Numerical 
Weather Prediction (NWP, i.e., fewer parameters and larger data samples available 
for tuning).  

When 3DVAR is used according to the mapping paradigm, y in the 3DVAR equation 
is replaced by M(y): 

))()(())()(()()(2 11 xHyMRxHyMxxBxxJ TfTf −−+−−= −−     (5) 

 where M is a mapping vector that links points on or near the nature attractor to 
corresponding points on or near the model attractor. 

 

3.4 Estimation and removal of systematic errors 

In some experiments with the traditional paradigm, systematic forecast errors will be 
statistically corrected. The systematic error (S) will be estimated for each forecast 
lead-time a posteriori, using dependent data, as a difference between the time mean 
of the forecast and the corresponding analysis fields over the verification period: 

AFS −= . 
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Bias-corrected forecasts (Fc) will be generated by removing the systematic error 
from the forecasts: 

SFFc −= . 

The use of independent training data in the estimation of systematic errors would 
introduce sampling errors, degrading the quality of bias-corrected forecasts. 
Therefore the results that will be presented with the use of a dependent training 
dataset will provide an upper bound estimate for the level of error reduction that can 
be achieved with the use of bias-correction algorithms in realistic applications.  

 

4. Climate mean mapping  

The mapping paradigm, as introduced in Section 1, involves  

a) Mapping observations close to the model attractor; 
b) Data assimilation using the mapped observations;  
c) Generation of numerical forecasts from the mapped initial condition;  
d) Remapping the analysis and forecast onto the attractor of nature.  

The new elements in the mapping paradigm are steps (a) and (d); steps (b) and (c), 
apart from the changes in inputs, are the same data assimilation and forecast 
procedures used in conventional studies. Before the new procedure can be applied, 
however, a challenging task, the estimation of the mapping vector (M) must be 
accomplished. Once an estimate of M exists, both (a) and (d) are simple operations 
that require minimal computational resources.  

 

4.1 Estimation procedure 



 15

In this section we assume that the long-term climatologies of nature (N) and the 
model (a free model integration, F) are readily available. The mapping vector is 
estimated as a difference between the long-term mean of nature and its model: 

)()( NHFHM −=  

   

.     (6) 

In this study, M was estimated based on 247,500 time step integrations of the 
“nature” and “model” versions of the 3-variable Lorenz system. This would be 
equivalent to 13-14 years worth of weather data, comparing the error growth 
characteristics of the Lorenz model to those of atmospheric models. The use of a 
significantly smaller number of time steps would result in estimates with relatively 
large sampling errors. When M, as in this study, is to be applied on model variables, 
the observation operator H is an identity matrix.  

 

4.2 Perfect observations 

For the sake of simplicity, the mapping paradigm will be demonstrated first in a 
situation with perfect observations. Note that in this case all forecast errors originate 
from the use of an imperfect model. Therefore, the possible positive effect of 
mitigating model-related errors on the total forecast error is expected to be largest in 
this scenario. Note that the schematics in Figs. 1 and 2 were numerically generated 
under this scenario. 

The different curves in Fig. 4 show the RMS error of four different forecasts: the 
continuous and dotted blue lines correspond to the RMS error of a conventional 
forecast with an imperfect model, started with initial conditions taken directly from 
nature, before and after bias correction, respectively. The red and green curves 
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show RMS error for forecasts with initial conditions derived by mapping nature using 
the mapping vector, before and after remapping, respectively. 

A few observations follow:  

1) Unlike the blue continuous (conventional method without bias correction, 
starting from nature, no observational error) and the other curves, the red 
error curve (mapped forecast without remapping) starts at a finite value, 
reflecting the application of the mapping vector on the initial conditions.  

2) Beyond a short initial period, the red curve is below the blue curve for all 
lead times until the level of nonlinear error saturation is approached. This 
is because the growth rate of errors for the mapped forecast (red curve) is 
lower than that for the conventional forecast (blue).  This indicates that the 
application of the mapping algorithm reduces errors introduced from the 
use of an imperfect model. 

3) The green error curve (remapped forecast) is below the red curve 
(mapped forecast) at all lead times, with the largest differences occurring 
at short lead times. This indicates that the remapping procedure is 
successful in moving the forecasts from the attractor of the model back to 
the vicinity of the attractor of nature. The application of remapping is most 
important at short lead times, where the displacement caused by the 
application of the mapping procedure is the largest in a relative sense 
when compared to the total forecast error. 

4) Most importantly, the green error curve (remapped forecast) is below the 
blue curve (conventional forecast) at all lead times. Forecast error after 
the first time step, for example, is reduced by a factor of 3. This indicates 
that the application of the mapping paradigm with the Lorenz model had 
an overall positive effect on forecast quality. 

5) For the first 3 time units the dotted blue curve (bias-corrected conventional 
forecast) is below the continuous blue curve (raw conventional forecast). 
The error for the remapped forecasts (green curve), however, is below the 
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dotted blue curve at all lead times. This indicates that the bias removal, 
though efficient in improving short-range forecast performance, cannot 
reproduce the effect of the mapping algorithm. The effect of the mapping 
algorithm is not due to a simple statistical bias correction, but rather is a 
result of the elimination of dynamically developing forecast errors triggered 
by the drift in conventionally initialized forecasts. 

The above results can be summarized as follows: 

• Steps a and b, the application of the mapping vector to the observations, 
move the initial condition away from nature (observational point 1); 

• Step c, starting the integration of the forecast model from the mapped initial 
condition, reduces model related errors (point 2); 

• Step d, remapping the mapped forecasts, eliminates the initial negative effect 
of mapping on forecast quality, producing forecasts superior to the 
conventional forecasts, even after they are bias corrected (points 3, 4, and 5). 

To understand the overall positive effect of the mapping algorithm, Fig. 5 displays a 
segment of nature and a representative series of short (2 time-step) conventional  
and remapped forecast trajectories. One observes in all cases that the blue 
(conventional forecast) trajectories display a rapid divergence from nature (black 
curve), a behavior characteristic of model related errors (Toth and Vannitsem 2002). 
By contrast, the green (remapped forecast) trajectories closely follow nature, 
indicating that the mapping algorithm can eliminate a large part of model drift-
induced errors and in the absence of observational errors (i.e., initial errors are 
exclusively due to the error in the estimation of the mapping vector, and 
consequently are small) produce very high quality short-range forecasts. 

The above results can also be interpreted in terms of improved shadowing 
performance (see, e.g., Grebogi et al. 1990; Judd and Smith 2004). For example, 
the time limit for shadowing nature with errors as small as the average error in one 
time step conventional forecasts is extended approximately three-fold. 
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4.3 Imperfect observations, replacement technique 

In this subsection, the effect of the mapping algorithm will be studied in the presence 
of observational errors, using the same climate mean mapping vector as in Section 
4.2. In step (b) of the mapping algorithm the simplest initialization technique will first 
be used, assuming all three variables of the Lorenz nature model are observed, and 
initializing the model with the observed values. The results in Fig. 6 are shown in the 
same fashion as in Fig. 4 (except omitting the line for post-processing). The results 
in Fig. 6 are consistent with those in Fig. 4 except that: 

1) The blue (conventional) and green (remapped) forecast error 
curves start at a finite value. This is consistent with the presence of 
observational errors that are also introduced into the initial 
conditions. 

2) The differences between the three curves are much reduced.  For 
example, the remapped forecasts (green) show only about a 15% 
error reduction (as compared to 67% in Fig. 4) with respect to the 
blue curve. This is due to the presence of large initial errors that 
mask the reducing effect of the mapping algorithm on model related 
errors (which are small when compared to the initial errors). In such 
a situation, the reduction of model related errors results in relatively 
small overall forecast improvements.  

Notwithstanding the smaller differences between the curves in the presence of initial 
errors (Fig. 6), the positive effect of the mapping algorithm in reducing the initial 
growth rate of errors is as large as in the case with no initial errors (Fig. 4), being 
around a factor of three. 
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4.4 Imperfect observations, 3DVAR 

In this subsection, the effect of the mapping algorithm will be tested with a data 
assimilation procedure. Unlike in the idealized experiments of Sections 4.2 and 4.3, 
where the mapping vector was estimated assuming nature is known, nature is 
replaced in Eq. 6 by analysis fields of nature: 

)()( AHFHM −=          (7) 

M is estimated using a 75,000 time-step long free model integration and traditionally 
generated analysis fields associated with a similarly long trajectory of nature (i.e., 
5000 analysis fields). Otherwise the same experiments will be carried out as in 
Section 4.3, except that in step (b) of the mapping algorithm a 3DVAR procedure will 
be used in place of the replacement technique. The results, shown in Fig. 7, are 
consistent with those in Fig. 6 except that: 

1) The initial error for all methods is lower than when the replacement 
technique is used due to the beneficial noise reduction properties of the 
3DVAR DA technique; 

2) More importantly, the starting point for the green curve is 9% lower than 
that for the blue curve. This shows that the remapped initial condition 
(analysis) is of higher quality than the conventional analysis. 

Point (2) above indicates that the combination of higher quality first guess fields from 
the mapping algorithm and the mapped observations leads to analysis fields that 
when remapped back to nature better capture nature than traditional analysis fields 
generated based on the fidelity paradigm.  

 

5. Adaptive mapping 
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For some dynamical systems the mapping vector may exhibit either regime and/or 
seasonally dependent variations; or for other applications no long-term climatological 
mean for nature or the model may be available. In such cases, using the mapping 
vector estimation procedure based on the long-term climatological mean difference 
between nature and the model, presented in the previous section, would yield sub-
optimal or poor results. For such applications, an adaptive mapping vector 
estimation algorithm is presented and tested in this section. 

 

5.1 Estimation procedure 

The adaptive mapping vector estimation is an iterative procedure that requires only a 
small amount of training data to begin with. In the course of the iterations, the initial 
crude estimate of the mapping vector is gradually refined. Once the analysis fields 
have asymptotically converged to the model attractor, further variations in the 
mapping vector estimate reflect the regime-dependent and/or cyclic behavior of the 
mapping vector that can potentially yield better analysis/forecast results when 
compared to a climatologically fixed mapping vector estimate. 

The adaptive mapping vector estimation procedure is part of the mapping algorithm. 
The algorithm is started by running conventional data assimilation/forecast cycles 
based on the fidelity paradigm, i.e., M = 0. After a relatively small number of 
analysis/forecast cycles the first increment of the mapping vector, MIncr, is computed 
as the time mean difference between the analysis (A) and corresponding first guess 
(Fg) fields: 

)()( AHFHM gincr −=       (8) 

This difference vector reflects the model drift that occurs during the length of a 
forecast integration within the assimilation cycle. For the next iteration period, the 



 21

mapping vector estimate used in the previous iteration (Mprior) is updated by MIncr 
such as: 

M = Mprior + MIncr       (9) 

M is used as the mapping vector in the mapping algorithm during the second 
iteration period, moving the observational data closer to the model attractor and 
using its reverse to move the analysis and forecast fields back toward nature for 
applications, including verification/evaluation. Since the first iteration(s) of M is(are) 
not expected to bring the observations all the way to the model attractor, subsequent 
iterations of the procedure are needed, and at the end of each MIncr is determined 
and M is updated as in Eqs. (8) and (9). This iterative process will let M approach its 
asymptotic behavior. In cases where the mapping vector is constant on the attractor, 
M is expected to converge to that value. Otherwise, the estimate of M will fluctuate, 
reflecting the regime dependent or cyclic behavior of the mapping vector. 

The adaptive mapping vector estimation method described above consists of the 
following steps: 

a) Set  Mprior = M = 0;  
b) Use M in mapping algorithm during next iteration period; 
c) Based on a small sample collected during the iteration period, determine  

)()( AHFHM gincr −=  

d) Update M by M = Mprior + MIncr.  

Steps b-d are repeated for each iteration of the method.  

The rate at which M converges to its asymptotic behavior depends on the 
characteristics of model drift; in particular, how much of the drift occurs during the 
length of a forecast used in the data assimilation cycle (i.e., 15 time steps in this 
study). The length of the iteration period (i.e., the number of assimilation/forecast 
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cycles) must be made long enough to effectively filter out noise in the computation of 
MIncr. Once the estimate of M converges, variations in M can be monitored and used 
on a continual basis to track regime dependent changes in the mapping vector. 

 

5.2 3DVAR application 

In this subsection, the adaptive mapping vector estimation will be tested with a 
3DVAR scheme assimilating imperfect observations. The experimental design is 
similar to that used in Section 4.4, except for the use of the adaptive mapping vector 
estimation procedure in place of climate mean mapping. For each iteration, analysis 
and first guess data from 120 analysis/forecast cycles, with a cycle length of 15 
model time steps, will be used. In terms of weather forecast applications the length 
of the iteration period is around 34 days, which is comparable in length to the 
periods used for estimating regime dependent systematic errors for bias correction 
of short-range forecasts (e.g., Stensrud et al., 2003; Cui et al., 2006). 

To demonstrate the convergence of the mapping vector estimate based on the 
adaptive procedure to its asymptotic behavior, Fig. 8 shows the three components of 
the mapping vector estimate M for the first 16 iteration periods. During the first few 
iterations, the series of mapping vector estimates for variable z display a strong 
convergence to a range close to the climate mean mapping vector estimate. The 
convergence, corresponding to the drift of the analysis toward the model attractor, 
appears to be complete by around the 5th iteration (which would correspond to 
around half year’s worth of data when compared to weather forecasts).  The drift is 
less apparent for the x and y variables which fluctuate around values slightly above 
or near the climate mean mapping vector estimate. Note the relatively low frequency 
variations observed in mapping vector estimates, especially for the x and y 
components of the system, that must reflect nonlinear interactions. 
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The relatively quick rate of convergence is also evident when the quality of the 
analyses and forecasts from the mapping algorithm is monitored through the 
iteration steps. Starting from the third iteration step (using a mapping vector estimate 
based on only 120 cases, or a month’s worth of data for weather forecasts), the skill 
of the remapped analysis and forecast fields shows a clear advantage over those 
from a conventional analysis/forecast cycle (not shown).  

The skill of the remapped analyses and forecasts beyond the convergence period is 
displayed in Fig. 9. The results confirm that the adaptive method provides practical 
and useful estimates of the mapping vector.  

One can ask whether the mapping algorithm for the Lorenz model is more skillful 
with the climatologically fixed vector or with an adaptive estimate of the mapping 
vector. Fig. 10 compares the errors in the remapped forecasts with the climate mean 
versus the adaptive mapping vector estimates for the same set of cases. 
Interestingly enough, the adaptive method yields more skillful remapped analyses 
and forecasts. The differences in the quality of analyses and short-range forecasts 
are statistically highly significant. Assuming that the analyses (separated by 15 time 
steps) and those ensuing forecasts that are non-overlapping (e.g., every third of the 
3 time unit lead-time forecasts on Fig. 10) are independent, the differences are 
statistically significant at the analysis and up to 2/10 time unit lead-time forecasts at 
the 0.01/10% or higher level. These results indicate that: 

1) The mapping vector for the Lorenz model is not constant but rather varies 
over the attractor; and 

2) The adaptive method presented in Section 5.1 is capable of capturing at 
least some of these regime-dependent fluctuations, leading to improved 
analysis/forecast performance. 

 

6. Summary  
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This study addressed how to best choose initial conditions when numerical forecast 
integrations of nature are made with imperfect models. In an attempt to reduce initial 
value related errors, forecasts have traditionally been initialized with states as close 
to nature as possible (a “fidelity” paradigm). An initial state close to nature, however, 
will necessarily be off the attractor of an imperfect model, leading to model drift and 
associated forecast errors. To reduce drift-induced errors, a new concept called the 
“mapping” paradigm was proposed in place of the fidelity paradigm. 

The new paradigm is based on the assumption that a one-to-one mapping exists 
between points on or near the attractor of nature and corresponding points on or 
near the model attractor. According to the new paradigm, observations are moved 
by a mapping vector from the vicinity of the attractor of nature to that of the model. 
Data assimilation is performed using the mapped observations and the resulting 
“mapped” analysis is used to initialize numerical forecasts that are also used as first 
guess fields in the next data assimilation cycle. For general applications, the 
analysis and forecasts are remapped back to the vicinity of the attractor of nature 
with a vector opposite from the mapping vector. The expectation is that performing a 
numerical integration near the model attractor will significantly reduce the error that 
would otherwise arise due to a drift of model integration trajectories started from a 
point near the attractor of nature to that of the model. 

Two algorithms were proposed for estimating the mapping vector. The conceptually 
simple climate mean estimation method defines the mapping vector as the 
difference between the long-term climatological means of nature and the model. If 
the mapping vector is expected to exhibit regime-dependent or cyclic behavior, or no 
long series of states are available for either nature or the model, an adaptive method 
is proposed that requires an order of magnitude less data. 

The new mapping paradigm was tested using a Lorenz (1963) 3-variable dynamical 
system as nature and a modified version of it as the imperfect model.  Experiments 
were carried out in the absence and presence of observational errors, with a simple 
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observation replacement and a 3DVAR data assimilation method as initialization 
techniques. The main results of this study are as follows: 

• In the absence of observational uncertainty, the mapped forecasts initialized 
from a state intentionally moved away from the attractor of nature by the 
climate mean mapping vector and then remapped with a vector opposite from 
the mapping vector to the vicinity of nature exhibited an error growth slower 
by a factor of three compared to a traditional forecast. A statistical bias 
correction of the traditional forecasts had only a limited effect as compared to 
the performance of the remapped forecasts. 

This result proves the concept of the mapping paradigm. It shows that in case of the 
Lorenz model, mapping exists and with a simple procedure it can be successfully 
estimated and used to reduce drift-induced forecast errors in practice. 

• When 3DVAR analysis fields generated with a data assimilation / forecast 
cycle using the mapping algorithm are remapped back to the vicinity of 
nature, they show significantly less error with respect to nature compared to 
analyses from a traditional data assimilation cycle based on the fidelity 
paradigm. 

This result indicates that the ability of the mapping algorithm to reduce drift-induced 
errors is useful in reducing not only forecast but also analysis errors. Paradoxically, 
moving the observational data away from nature and creating the numerical forecast 
used in the data assimilation cycle near the attractor of the model (and not near 
nature as done traditionally) improves the fidelity of the remapped analysis fields. 

• The mapping algorithm with an adaptive mapping vector estimation produced 
higher quality analysis and forecast fields compared to those made with the 
climate mean mapping vector estimation method. 
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This result indicates that the mapping vector in the Lorenz system varies by phase 
space location and such variations can be successfully monitored with an adaptive 
estimation method using a relatively small data sample. 

 

7. Discussion 

7.1 Justification of the concept 

To some readers the concept behind the mapping paradigm i.e., moving the initial 
conditions away from observations, and the validation results using the Lorenz 3-
variable system may at first sight appear counterintuitive or unexpected. If initial and 
model errors are not separated at least conceptually, one may be tempted to follow 
the traditional paradigm and attempt to force the analysis to stay close to nature 
despite the natural tendency of first guess forecasts to drift away from nature toward 
the model attractor.  

The mapping paradigm is, however, consistent with general considerations of 
dynamical systems theory. To realize its potential merits, one must first recognize 
that choosing an initial state close to nature which is clearly off of the model attractor 
(the fidelity paradigm), will lead to the emergence of model drift and related forecast 
errors and, therefore, is not the best way to initialize an imperfect model. Second, if 
forecasts initialized even in such a sub-optimal way as the traditional paradigm (i.e., 
the initial condition is off the model’s attractor) turn out to be useful, that in itself is an 
indication of the existence of a mapping between nature and the model. Third, one 
does not need a perfect estimate of the mapping vector. The quality of traditional 
analyses and forecasts can be surpassed as long as the mapping algorithm brings 
the initial condition and forecast closer to the model attractor than they would be by 
using traditional initialization procedures (see Fig. 8 and associated discussion). This 
is true especially since the analysis and forecast fields are remapped back toward 
nature using the opposite of the mapping vector.  
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It is the apparent complexity of the problem that may have deterred some 
investigators from a full exploration of the optimal choice of initial conditions for 
imperfect models. The mapping paradigm is based on the recognition of the 
differences between initial and model related errors. Once the different origins and 
behaviors of initial condition and model related errors are clarified, it becomes 
evident that to reduce model drift-induced errors, one must search for initial states 
that represent nature on or near the model attractor. This is a simple and probably 
old idea, with some related limited experiments reported in the literature. The real 
challenge is to find a general procedure for identifying the mapping vector that can 
be used in practice to reduce drift-induced errors and thus improve forecast 
performance.  

 

7.2 Mapping relationship 

In this paper, two approaches for estimating the mapping relationship between 
states on or near the attractor of nature and the model were proposed and tested, 
but other approaches may be designed as well. Some readers may question how it 
is possible to arrive at useful estimates of the mapping vector by using the adaptive 
method with relatively small amounts of data (based on 120 cases only), while much 
larger data sets are necessary for estimates of similar quality based on the climate 
mean difference method.  

One must note that when the climate means of nature and the model are computed, 
there is no one-to-one relationship between the states considered from the two 
sources (i.e., long segments from nature and a free model run). Therefore, any 
systematic difference can be evaluated only in a statistical sense, by taking the 
mean of a large number of realizations, preferably covering a large part of the 
attractors. This is necessary to avoid the large sampling errors that may result if 
different parts of the nature and model attractors are not represented in the same 
proportions in small data samples.  
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By contrast, the adaptive method compares analysis and short-range forecast states 
valid at the same time. Unlike the randomly chosen trajectory segments that are 
compared in the climate mean procedure, these states are designed to closely 
shadow nature and hence the analysis – forecast pairs valid at the same time are 
directly related. Their difference field is therefore dominated by systematic and not 
by chaotic type influences. This allows for an incremental approximation of the full 
mapping vector, starting with analysis fields close to nature (the traditional analysis) 
that, after a number of iteration periods, approach the model attractor, without ever 
losing the shadowing relationship between nature and the analysis fields. 

Once a good estimate of the mapping vector is attained, the mapping algorithm can 
increase the time limit for which shadowing is possible with an imperfect model. 
While the use of mapping leads to a rather significant 3-fold increase in shadowing 
time for the 3-variable Lorenz system, the quantitative effect in other systems 
depending on the Lyapunov spectrum and other characteristics of the systems in 
question, may be less dramatic. The increase in shadowing time is achieved by 
allowing the model forecasts to systematically differ from nature as determined by 
the mapping vector. The smaller the relative role of initial value related errors, the 
more positive impact the mapping algorithm would have for shadowing and, in 
general, for reducing total forecast errors.  

Whether there exists a unique optimum mapping relationship between particular 
numerical models and nature is an open question. This question, however, may be 
irrelevant for practical applications, as long as estimates of mapping provide useful 
results. As one considers progressively poorer models of nature, the identification of 
a mapping relationship is expected to become more difficult and beyond a certain 
point of dissimilarity (at which a model may become completely useless for 
forecasting) mapping may not exist any more. 

 

7.3 Limitations of the method 
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As for the limitations inherent in the method, it must be pointed out that the mapping 
algorithm is designed to reduce forecast errors associated with the transient process 
of model drift that a traditionally initialized forecast experiences. Other model related 
forecast errors that are independent of any transient behavior (e.g., errors in the 
speed or configuration of phenomena in nature arising from erroneous/simplified 
model formulation), referred to as “asymptotic”, are not affected by, but easier to 
identify with the mapping algorithm.  

Another limitation of the mapping algorithm is that to the extent that the estimate of 
the mapping vector has some error in it, the mapped initial conditions will be closer 
to but not exactly on a model trajectory corresponding to nature. Depending on the 
quality of the mapping vector estimation, model drift may be significantly reduced but 
not necessarily eliminated. 

The mapping algorithm presented here attempts to assess the systematic 
differences between nature and its representation in a numerical model. While it is 
expected to work with biased observations, better performance in terms of mapping 
vector estimation and forecast quality is expected if the observations are bias 
corrected before their use. Techniques for such observational system-dependent 
bias correction can be readily found in the literature (see, e.g., Derber and Wu 
1998). 

 

7.4 Practical applications 

The concept of mapping is general. The results presented in this paper provide a 
proof of concept in the case of a simple system. The algorithms proposed, using 
either the climate mean estimation or the adaptive estimation (if needed for the 
description of regime-dependent or cyclic variations in the mapping vector, or 
because of a lack of climatological data) can be easily applied to more complex 
systems. For example, the generation of a 13-14 year integration with a model used 
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in operational Numerical Weather Prediction (NWP) for climate mean mapping 
vector estimation, though not trivial, is a doable task. Adaptive mapping vector 
estimation methods would need significantly less resources. Whether mapping is 
applicable and practically useful for complex systems can be answered only through 
further studies.   

From a practical application point of view it is encouraging that systematic 
differences between analyses and short-range forecasts can be well estimated in 
real world applications (see, e.g., Dee and Da Silva, 1998; Cui et al., 2006; Glahn 
and Lowry, 1972). This is because the time-mean difference between analyses and 
corresponding short-range forecasts is dominated by their systematic difference, not 
by initial value-related errors that amplify rapidly due to chaotic error growth at later 
lead times. The adaptive mapping algorithm, in fact, builds on such estimates of 
systematic differences between analysis and first guess fields. Because only a small 
portion of the model drift occurs during the length of a single first guess forecast, the 
adaptive method allows the analysis to “drift” closer to the model attractor with each 
successive iteration. This is achieved by moving the observations in each iteration 
with a mapping vector estimate incremented by the systematic difference between 
the analysis and first guess fields determined over the previous iteration period (see 
Section 5.1). 

As described in the Introduction, estimation of systematic differences between 
forecasts and a proxy for truth is an important element of both the traditional and the 
new mapping paradigms. There are two critical differences though regarding the 
estimation and use of these systematic differences. In the traditional approach, the 
systematic error is estimated as a function of lead-time and it is removed from the 
forecasts, to bring the model forecast closer to the attractor of nature. In contrast, 
the mapping approach estimates an asymptotic, lead-time independent systematic 
difference, and uses that to move the observations closer to the model attractor.   
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A possible test bed for the application of the mapping paradigm in more complex 
systems may be coupled ocean-atmosphere model forecasts of Earth’s climate 
system. First, model related errors for general circulation models of the ocean are 
generally estimated to be larger than those for the atmosphere. And second, when 
coupled ocean-atmosphere models are started with observed initial conditions, 
typically a large drift develops. This is partly due to the inability of the imperfect 
model components to realistically represent the delicate balances that exist in nature 
with respect to the heat and momentum exchange between the two sub-systems. 
The mapping of observational data from both sub-systems could possibly lead to a 
reduction in model drift and drift-induced forecast errors. 

 

7.5 Potential benefits 

If proven useful for complex systems, application of the mapping paradigm may 
have a number of potential advantages in the areas of weather, climate, or other 
natural systems:  

• Improved forecasts due to the elimination of drift induced errors; 

Traditional forecasts start from a state close to that observed in nature. If we adopt 
the mapping paradigm, such a forecast would be considered to be started with an 
initial error opposite to the mapping vector. This error may initially decay as the 
forecast drifts closer to the model attractor. However, the forecast trajectory in 
general will remain different from the trajectory started from a mapped initial 
condition. It is this difference, or drift-induced error, that can be reduced or 
eliminated via the mapping algorithm. When using the mapping paradigm, in the 
absence of drift-induced problems, ensemble forecast performance would also be 
improved since ensembles are designed to represent initial value and possibly 
asymptotic model error related forecast uncertainties but not drift-induced errors.  
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• Improved analysis fields due to the use of more accurate forecasts in DA;  

In the framework of the fidelity paradigm, observational data are used directly as 
they are, forcing the initial states to be close to nature. Systematic differences 
between nature and first guess background fields are assessed to move the 
background even closer to nature (and hence further away from the model attractor). 
This leads, as described above, to the emergence of additional, drift-induced 
forecast errors. These errors naturally appear in the analysis fields that use the 
forecasts as first guess fields. The adaptive mapping algorithm also uses estimates 
of systematic differences between analyses and forecasts. These systematic 
differences, however, (1) are assessed not in a lead-time dependent manner, for a 
particular lead time of the first guess forecast, but asymptotically; and (2) the 
estimates are used to move the analysis fields not toward nature, but the attractor of 
the model. With these features the mapping algorithm eliminates drift-induced 
forecast errors and after remapping, produces analysis fields that are of higher 
quality than those from the fidelity paradigm.  

Though in this study only the 3DVAR method was tested, other DA techniques such 
as 4DVAR or ensemble-based methods should also benefit, without any special 
changes, from the use of the mapping algorithm. In fact, ensemble-based data 
assimilation methods (see, e.g., Tippet et al. 2003) used with the mapping algorithm 
may be most effective in reducing drift-induced errors by searching for initial 
conditions that are both very close to the model attractor (via using ensemble-based 
background error covariance information), and correspond well with the state of 
nature (via the use of the mapping/remapping procedure). 

• Assessment of asymptotic model errors without the masking effect of model 
drift; 

Forecasts with the fidelity paradigm are affected both by the drift of the model and 
the errors due to initial condition uncertainty. The assessment of asymptotic model 
errors is severely hindered, and possible only through the statistical comparison of a 
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very large sample of unrelated states from nature and a free model run. By contrast, 
by untangling initial condition and model related errors the mapping algorithm 
establishes a one-to-one connection between states of nature and the model. In the 
absence of model drift, asymptotic (i.e., lead-time independent) model errors can be 
readily identified. The estimate of the mapping vector, in fact, can serve as a 
quantitative measure of asymptotic model errors, that, with the adaptive estimation 
method can be assessed as a function of phase space location.  

The adaptive mapping algorithm can also be used to determine, over a relatively 
short period of time and without having to use forecast information beyond the length 
of the first guess, whether proposed changes to a model bring it closer to or move it 
further away from nature. Tuning may become easier, including empirical or 
stochastic improvements to dynamical models proposed by, e.g., D'Andrea and 
Vautard (1999). By making the behavior of the model independent of forecast lead-
time, an artificial chasm between weather (dominated by drift related model errors) 
and climate (dominated by asymptotic model errors) forecasting can also be bridged. 

• Eliminating the need for lead-time dependent statistical bias correction.  

Drift related errors in forecasts initialized with the traditional fidelity paradigm make 
the use of lead-time dependent bias correction algorithms imperative. Such 
schemes, especially for extended lead times, require the costly generation of a long 
series of analyses and forecasts based on historical data (e. g., Hamill et al., 2003). 
To compound the problem, in order to assess systematic errors for new versions of 
the analysis or model, the generation of large reanalysis and reforecast databases 
need to be repeated after any improvements are made to the system. By contrast, 
mapping the initial conditions significantly reduces or eliminates model drift, and 
remapping the forecasts corrects for asymptotic model errors. Therefore the use of 
the mapping algorithm much reduces or eliminates the need for the logistically 
complicated lead-time dependent correction of systematic errors.  
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Figure 1. Schematic illustrating model drift in a 3-dimensional phase space, as well 
as on a 2-dimensional plane of x and y. The black curve represents nature; the blue 
curve, starting from a point on the trajectory of nature, represents a forecast with an 
imperfect model. For further details, see text. 
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Figure 2. Same as Fig. 1, except illustrating the mapping paradigm, assuming 
perfect knowledge about the initial state of nature. The black and blue curves are 
nature and its forecast with an imperfect model; the dashed purple arrow indicates 
the mapping vector by which the initial state of nature is moved to the model 
attractor; the red curve represents the mapped forecast; the dotted purple arrow 
indicates the remapping of the forecast to/near the attractor of nature; and the green 
curve is the remapped forecast. 
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Figure 3. Same as Fig. 2, except with observational errors and data assimilation. 
The black curve represents nature, with the blue open and closed circles, cross, and 
curve standing for observations, the first guess, the analysis and forecast from a 
traditional 3-DVAR analysis/forecast cycle, respectively.  The dashed purple arrow 
represents the mapping vector moving the observations near the attractor of the 
model, with the red open and closed circles, cross, and curve standing for the 
mapped observations, the first guess, and the forecast from an analysis/forecast 
cycle with mapping, respectively. The green curve is the forecast remapped with the 
opposite of the mapping vector (dotted purple arrow). 
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Figure 4. Rms error with perfect initial conditions using the traditional forecast 
approach before (solid blue) and after statistical post-processing (dotted blue), the 
mapping algorithm with climate mean mapping vector estimation before (red) and 
after (green) remapping the forecasts. Time unit is 15 model time steps, and 1 on 
the horizontal axis corresponds to initial time. 
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Figure 5. Same as Fig. 2, except for five consecutive forecast segments, indicating 
the difference in shadowing performance between the traditional (blue) and 
remapped (green) forecasts with an imperfect model but no initial errors. 
 

0

5

10

15

0

5

10

15
0

5

10

15

20

25

30

35

40

XY

Z

Nature
Fid
Remap
Initial time



 42

 

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Lead time

E
rr

or

Fid

Map

Remap

 
Figure 6. Same as Fig. 4, except in the presence of observational errors, with 
replacement initialization.  
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Figure 7. Same as figure 6, except with 3-DVAR initialization. 
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Figure 8. Three (x, y, z) components of the adaptive estimate of the mapping vector 
M (vertical axis) for iteration periods 1-16 (horizontal axis). The dotted horizontal 
lines (the green and blue curves are nearly overlapping) represent the time invariant 
climate mean mapping vector estimate (see Section 4.1). 
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Figure 9. Same as Fig. 7, except with adaptive mapping vector estimation, and 
averaged for iteration periods 6-16, shown for 25 time units. 
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Figure 10. A comparison of errors for the remapped forecasts with adaptive (solid 
green line, as in Fig. 9) and with climate mean mapping vector estimation (green line 
with dots, as in Fig. 7), valid for the same cases as in Fig. 9. 
 
 
 
 
 
 


