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ABSTRACT

Most ensemble forecast verification statistics are influenced by the quality of not only the

ensemble generation scheme, but also the analysis scheme and forecast model. In this study, a

new tool called Perturbation vs. Error Correlation Analysis (PECA) is introduced that lessens

the influence of the latter two factors. PECA evaluates the ensemble perturbations, instead

of the forecasts themselves, by measuring their ability to explain forecast error variance. As

such, PECA offers a more appropriate tool for the comparison of ensembles generated by using

different analysis schemes and models.

Ensemble perturbations from both NCEP and ECMWF were evaluated and found to per-

form similarly. The error variance explained by either ensemble increases with the number

of members and the lead time. The dynamically conditioned NCEP and ECMWF perturba-

tions outperform both randomly chosen perturbations and differences between lagged forecasts

(”NMC” method). Therefore ensemble forecasts potentially could be used to construct flow

dependent short-range forecast error covariance matrices for use in data assimilation schemes.

It is well understood that in a perfect ensemble the spread of ensemble members around

the ensemble mean forecast equals the rms error of the mean. Adequate rms spread, however,

does not guarantee sufficient variability among the ensemble forecast patterns. A comparison

between PECA values and Pattern Anomaly Correlation (PAC) values among the ensemble

members reveals that the perturbations in the NCEP ensemble exhibit too much similarity,

especially on the smaller scales. Hence a regional orthogonalization of the perturbations may

improve ensemble performance.
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1 Introduction

There exist a large number of verification tools for the evaluation of ensemble forecasts (see,

e. g., Stanski et al. 1989). One type of measures evaluates the performance of a summary

indicator of a set of forecasts such as the mean or the median value of the ensemble distribution.

Typically, the root mean square (RMS) error and/or the pattern anomaly correlation (PAC)

is used for this purpose. A second set of measures evaluates probability distributions based on

the ensemble forecasts. Such measures include, for example, the Brier Skill Score (BSS), and

the Ranked Probability Skill Score (RPSS) that measure the reliability (statistical consistency

with observations) and resolution (how different reliable forecast probability values are from the

climatological distribution). A third set of related measures assesses the utility of the forecasts

from a user’s point of view. Related measures include the Relative Operating Characteristics

(ROC) and the economic value of forecasts (both of which are related to resolution).

When a set of ensemble forecasts are evaluated through any of the above scores, the re-

sults will reflect the combined effect of the quality of (i) the analysis field around which the

initial ensemble is centered; (ii) the forecast model(s) that is used for integrating the ensemble

forecasts; and (iii) the way the initial ensemble perturbations are formed.

In the present paper we propose a new ensemble evaluation method that is less sensitive to

the first two aspects of ensemble performance and measures more directly the effect of initial

perturbations on ensemble performance. The proposed method, called Perturbation vs. Error

Correlation Analysis (PECA), is based on the comparison of ensemble forecast perturbations

(ensemble forecasts minus control) and forecast error patterns (control forecast minus verifying

analysis).

The motivation for the development of such an ensemble evaluation measure is two-fold.
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First, a tool that is less sensitive to differences in the quality of the analysis and forecast

schemes used to generate the ensembles can be more readily applied in studies that compare

ensemble forecasts generated by different NWP forecast centers, using various analysis schemes

and models. Second, such a tool can be used to evaluate whether ensemble members are

correlated with each other over various size areas at the proper level, i. e., at the level at which

the error correlates with ensemble perturbations. Such an analysis in fact amounts to measuring

the spread within the ensemble but in a manner different from earlier studies where spread is

defined pointwise, in an rms sense. Here ”pattern spread” is evaluated over predefined regions,

revealing an aspect of ensemble perturbations that has not been thoroughly investigated before.

Here we refer to an earlier study by Molteni and Buizza (1999), based on an EOF analysis

of ensemble perturbations. The method involves the comparison of ensemble perturbations and

error patterns. This analysis, however, is carried out in a statistical sense only cases, in terms

of a comparison of the perturbations and error EOF spectra. Therefore, unlike the method

proposed here (PECA), it means only the statistical consistency, but not the forecast skill of

ensemble system.

After a description of the proposed method and its properties in section 2, PECA results

are presented for the National Centers for Environmental Prediction (NCEP) and the Euro-

pean Centre for Medium Range Weather Forecasts (ECMWF) ensemble forecast systems over

different areas of the globe for a selected variable (500 hPa geopotential height) and for total

energy in section 3. Also ensemble perturbations are compared with ”NMC”-type perturba-

tions (based on differences between short range forecasts valid at the same time, see Parrish

and Derber, 1992). For a comparison, PECA results are also presented for randomly selected

ensemble perturbations, and for ”perfect” ensembles where the verifying analysis is taken as

one of the ensemble members. These results are presented in section 4. Some conclusions are
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offered in section 5.

2 Methodology

a. Description

Ensemble perturbations, at either numerical weather prediction (NWP) centers, are defined

as the differences between the perturbed forecasts and their respective control forecast (started

from an unperturbed analysis):

Pi(t) = FC
i (t)− FC

control(t), (1)

where C, the originating center, is either NCEP or ECMWF, and i = 1, 2, . . . , N , with N = 20

for NCEP and 50 for ECMWF.

Note that the NCEP ensemble perturbations, at 24-hour lead time are, by definition, the

bred vectors which, after rescaling are used as perturbations to initiate the next set of ensemble

(Toth and Kalnay, 1997). The ECMWF initial perturbations are combinations of initial and

evolved singular vectors (Buizza and Palmer, 1995; Molteni et al. 1996; Barkmeijer et al. 1999).

At the time of writing, products consist of 10 ensemble forecasts both at 0000 UTC and 1200

UTC from NCEP, and a 50-member ensemble at 1200 UTC while ECMWF each day.

In both systems, forecast errors E(t) are defined as the difference between the control

forecast and the verifying analysis from the same center,

E(t) = FC
control(t)− FC

analysis(t). (2)
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A posteriori optimal, combination of n perturbations is obtained by solving the least-square

problem

Min|E−
n∑
i=1

αiPi|L2 (3)

Having obtained αi from the above equation, the optimally combined vector is defined as

Poptimal =
n∑
i=1

αiPi. (4)

Note that the optimal combinations as defined in (3) and (4) are based on actual error patterns.

Therefore unlike the weighted ensemble mean of van den Dool and Rukhovets (1994) that is

based on past statistics, the optimal perturbations can only be used a diagnostic value (and

not as a prognostic tool).

The pattern anomaly correlation (PAC) between any two vectors X and Y is defined by

Ac(X,Y) =
{X,Y}

{X,X} 1
2{Y,Y} 1

2

. (5)

PECA is defined as the PAC between X = Pi (or X = Poptimal) and Y = E. Note that the

square of the correlation, A2
c , can be considered as explained error variance. In this study,

PECA will be computed for different regions. In addition to the global domain, results will also

be shown for the Northern (NH, 20N-77.5N) and Southern Hemisphere extratropics (SH, 20S-

77.5S), the Tropics (20N-20S), and North America (NA, 140W-50W, 20N-60N) and Europe

(EU, 20W-40E, 77.5N-30N). Correlation values computed between individual perturbations

(Pi) and the forecast errors (E) will be averaged over the 10 individual perturbations in most

cases studied. In addition, correlation values between Poptimal and E(t) will also be computed
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for the same domains and forecast lead times.

b. Properties

All verification scores listed in the Introduction compare a forecast ensemble to the verifying

analysis. The scores therefore reflect, beyond the quality of the ensemble generation technique,

also that of the initial analysis around which the ensemble is centered, and the model that

is used for integrating the ensemble forecasts. In contrast, PECA attempts to evaluate the

quality of ensemble perturbations. This is achieved by measuring the amount of variance that

individual and/or optimally combined ensemble perturbations can explain in forecast error

fields. The higher the PECA values are, the more successful an ensemble is in achieving its

goal of capturing forecast errors. PECA values are not directly influenced by how large the

forecast errors are but rather by the ability of the ensemble perturbations to explain the forecast

error.

The above point will be illustrated through a comparison of PECA with PAC as it is

traditionally applied in Forecast Verification (PACFV). PACFV is defined as the PAC between

(Fcontrol − C) and (Xanalysis − C), where C is the climate mean. Note that while PACFV

compares a forecast anomaly from the climate mean with the verifying analysis anomaly from

the climate mean, PECA compares the pattern of ensemble perturbations (perturbed minus

control forecast) to that of the forecast error (control forecast minus analysis). While PACFV

evaluates the overall quality of the forecast anomaly with respect to the climate mean, PECA

focuses on the quality of the ensemble perturbations defined with respect to the control forecast.

The fact that the anomalies defined by PECA are taken from the control forecast (and not from

the climate mean) eliminates, to a large extent, the effect the quality of the initial analysis has

on the verification measure.
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The effect of differences in the quality of models used to generate two ensemble systems to

be compared is also expected to be reduced when using PECA. Model differences, however, are

expected to exert some influence on PECA. In particular, if a model, due to some imperfection,

is not able to reproduce an instability that is present in nature, an ensemble generated by

that model will not be able to capture forecast errors associated with that kind of instability.

Alternatively, if a model exhibits a spurious instability that is not present either in nature or in

another model, forecast errors associated with that model will not be captured by an ensemble

generated by the other, more realistic model. Indications for both types of model imperfection

related problems will discussed in the next section.

When comparing ensembles generated by different NWP centers, higher PECA values are

thus indicative of an ensemble of higher quality, that can better explain its own center’s forecast

errors (however small or large they are). A superior ensemble in terms of PECA values may

show inferior performance in terms of traditional measures like PACFV or probabilistic scores,

when a NWP center’s analysis and/or model performance is poorer than that of the others.

Beyond comparing the performance of ensembles generated by different NWP centers,

PECA can also be used to evaluate an ensemble’s performance in terms of the value of correla-

tion among its members. In a perfect (reliable, statistically consistent) ensemble, the verifying

analysis is indistinguishable from the ensemble forecasts. It follows that PECA values com-

puted by substituting the actual error field by one of the ensemble perturbations (perfect

model/ensemble assumption, PECA perfect) should be at the same level as those computed

using the actual error field. Any discrepancy can be interpreted as a deficiency in the ensemble

generation technique (lack of proper representation of initial and/or model related uncertainty).

The PECA values computed in a perfect model/ensemble environment measure how similar per-

turbation patterns are over a selected geographical domain, hence the use of the term ”pattern
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spread”.

If the PECA values in the perfect model/ensemble case are, for example, higher than those

computed with real error fields, that is an indication for an under-dispersive ensemble. In

such an ensemble the perturbation patterns show a lack of variability for properly explaining

forecast error patterns. A careful comparison of perfect model/ensemble and regular PECA

values computed over various size domains can provide quantitative guidance on whether the

diversity of perturbation patterns is adequate or needs to be improved in an ensemble. Note

that pattern spread, as will be shown in the next section, can be insufficient even if the rms

spread, computed and averaged over individual grid points, is large enough. While the rms

spread of an ensemble can be easily changed by multiplying the initial perturbations by a scalar

number, PECA (pattern spread) is not affected by such a change. The pattern spread can only

be changed through the introduction of more diversity in the initial ensemble perturbation

patterns. The apparent difference between rms spread and pattern spread indicates that PECA

evaluates an aspect of ensemble performance that has not been previously addressed.

3 NECP and ECMWF ensemble results

a. A case study

Before a statistical analysis of PECA results accumulated over a 30-day period is presented

in the following subsections, two examples for the application of the proposed method over the

North American region are shown below.

Fig. 1a shows NCEP 500 hPa geopotential height analysis field valid at 12 UTC May 8,

2001. The analysis field shows a wave-like structure across the higher latitudes of NA. The
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corresponding error pattern of an 8-day lead time forecast initialized at 1200 UTC April 30,

2001, displayed in Fig. 1b, is dominated by a dipole pattern over eastern Canada. In this

example, even the best combination of the NCEP ensemble perturbations (Fig. 1c), computed

a posteriori based on the actual forecast error, fails to explain much of the actual error. The

variance explained by the optimal ensemble perturbation is below 40%, compared with 69%

explained variance for 8-day forecast errors averaged over the experimental 30-day period. A

large part (60%) of the error remains unexplained by the ensemble. This is also evident from

Fig. 1d that displays the residual error R(t) (Fig. 1d), defined as the part of the forecast error

that cannot be explained by Poptimal(t), i.e. R(t) = E(t) − Poptimal(t). The magnitude of the

optimal perturbation displayed was computed by projecting the forecast error E(t) onto the

corresponding optimally combined ensemble perturbation defined by eq. (4).

The poor PECA performance of the ensemble initialized at 1200 April 30 2001 at 8-day lead

time (Fig. 1) is in contrast with that at 10-day lead time, shown in Fig. 2. The corresponding

verifying analysis field (1200 UTC May 10 2001, Fig. 2a) is dominated by a predominantly zonal

flow. In this case the error field (Fig. 2b) is characterized by a wave-train type pattern north

of 40N. The optimal perturbation (Fig. 2c) successfully explains the error pattern, including

most of the details. 94% of the error variance is explained (compared with an average of 71%),

leaving only a small fraction (6%) of the total error field unexplained (Fig. 2d).

b. Error variance explained by respective ensembles

Figs. 3 a-f show the PECA correlation values computed between the NCEP (solid lines)

and ECMWF (dotted) forecast error and the corresponding ensemble perturbations for 500hPa

geopotential height over the global, Northern and Southern Hemisphere, Tropical, North Amer-

ican and European domains respectively as a function of forecast lead time. Geopotential height

9



at 500hPa is one of the variables with the least amount of systematic error, thus the correlation

values will reflect the ensemble’s ability to explain initial value related forecast errors. The

PECA values shown in Fig. 3 are averages over a 30-day period started at 1200 UTC April 1,

2001. The thin lines in Fig. 3 represent PECA values averaged over 10 individual ensemble

perturbations, while the corresponding thick lines represent the PECA values for the optimally

combined vectors (see eq. (4)).

As expected, the optimally combined perturbation vectors (thick lines) can explain a much

larger portion of the forecast error than the individual perturbations (thin lines) at all lead

times and over each domain for both forecast systems. Note that over smaller areas (NA and

EU), both ensembles can explain a larger amount of forecast error variance. This is due to

the fewer degrees of freedom over these smaller areas. This also explains the larger sampling

fluctuations (noise) observed in the results valid for smaller geographical areas.

For individual perturbations, the NCEP ensemble performs better out to 7 days lead times

(after which the correlation values for the two systems become similar) over all domains except

the tropics. Over the tropics, the NCEP/ECMWF ensemble shows superior performance be-

fore/after 3 days lead time. When the systems are compared using the optimal perturbations,

the NCEP ensemble exhibits higher correlations up to 2-3 days lead time, after which the two

ensembles perform rather similarly. We note that the initial ensemble perturbations likely play

a more important role at short lead times (0-5 days), while model related errors, in a relative

sense, may influence on the results more at longer (6 to 10 days) lead times. In particular, the

presence of model bias that would not be well explained by the dynamically evolving ensemble

perturbations, is expected to lead to lower PECA values.

Note that until January 2002, ECMWF ensemble system had no initial perturbations in the

tropics. The recent introduction of targeted tropical singular vectors (Barkmeijer et al 2001) is
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expected to improve performance of the ECMWF ensemble in the vicinity of tropical areas.

Another important observation is that both the individual and the optimal vectors can

explain an increasing amount of error variance as the lead time increases. This can be explained

by a collapse of the phase space containing possible forecast errors into a smaller dimensional

subspace due to 2 factors. Perturbations, including the error fields that evolve quasi linearly,

are attracted to the fastest growing nonlinear perturbations (Toth and Kalnay, 1993, 1997),

that are related to the leading Lyapunov vectors (LVs) (e.g. Buizza and Palmer 1995; Szunyogh

et al. 1997; Reynolds and Errico 1999; Wei 2000; Wei and Frederiksen 2002). This may affect

the rapid increase of correlation values in the first 5 days. Second, when nonlinearities become

dominant, the error (and perturbation) fields become dominated by larger scales, leading to a

further collapse of the error subspace. This process may explain the slower increase in PECA

values beyond 5-day lead time.

c. Explained error variance with swapped ensembles.

To gain a better understanding of the relative role of ensemble perturbations and model

errors, here we discuss PECA results where the first 10 NCEP perturbations (NPs) are used to

explain the ECMWF forecast errors, and the first 10 ECMWF perturbations (EPs) to explain

the NCEP forecast errors. The results are shown as dashed and dash-dotted lines respectively

in Fig. 3. For short lead times of up to a few days, the optimally combined NPs can explain

the ECMWF forecast errors slightly better than the optimally combined EPs can explain the

NCEP forecast errors over the global and NH domains. After that the optimally combined EPs

have a slight advantage. Over the Southern Hemisphere and the tropics however, the optimally

combined EPs can explain the NCEP forecast errors better than the optimally combined NPs

can explain the ECMWF forecast errors.
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While at very short lead times, the results are similar to the “unswapped” cases discussed

above, the individual and optimal swapped perturbations display a much reduced ability to

explain the other center’s forecast errors at longer lead times over the large domains. At 10-

day lead time for the global domain, for example, the NCEP ensemble can explain about 40%

variance in the NCEP control forecast error whereas only 10% in the ECMWF forecast error.

Over the smaller North American and European areas, however, no such large discrepancy is

present (see Fig. 3e-f).

This suggests that at longer lead times, the error fields have a strong large scale model

specific component that only an ensemble generated via the same model can capture. This

error may be due to some unrealistic or spurious instabilities that are specific to each model,

but are not present in nature. The unstable structures that appear in the error fields will

appear only in perturbations generated by the same model.

The fact that the NCEP ensemble performance shows more degradation than the ECMWF

ensemble when used to explain errors in forecasts from the other center suggests that it may be

more affected by the presence of spurious large scale instabilities. This result is consistent with

that of Saha (2001) who, using a technique developed by van den Dool et al. (2000), found

that ECMWF forecasts contain less large scale systematic error than NCEP forecasts do.

Interestingly over several domains, the inclusion of a few ECMWF members with the NCEP

ensemble leads to higher explained variances for the NCEP forecast errors (dash dot dotted

lines) at intermediate lead times. At 7-day or longer lead times, however, such a mixed ensemble

performs worse than a pure NCEP ensemble. The inclusion of NCEP perturbations improves

(degrades) the ECMWF ensemble performance before (after) 3 days lead times.

d. The effect of ensemble size.
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To the extent ensemble perturbations are independent, optimally combining more ensemble

members is expected to lead to higher explained error variances (compare thick and thin lines

in Fig. 3). In this subsection, we explore the effect of increased ensemble membership in more

detail.

Fig. 4 shows the PECA values between various number of optimally combined NPs and EPs

and the respective NCEP and ECMWF forecast error. The results are displayed for various

lead times (1, 2, 3, 5 and 7 days). The results from NCEP and ECMWF are indicated by thick

and thin lines respectively.

While the ECMWF ensemble has 50 members initiated at 1200 UTC, NCEP has only 10

members at both 0 and 1200 UTC. To study the effect of a larger ensemble for the NCEP

system, we combined the 1200 UTC and the subsequent 0000 UTC NCEP ensembles. The

choice for the use of the subsequent (and not preceding) ensemble was motivated by the fact

that the preceding, longer lead time ensembles would have led to higher correlations (see Fig.

3).

As expected, increasing the number of ensemble perturbations increases the correlations

between the forecast errors and the optimally combined perturbations for both centers. For the

global domain (Fig. 4a), for lead times up to 5 days (thick and thin dotted lines respectively),

any available number of optimally combined NPs can explain a slightly larger percentage of

forecast error than the same number of optimally combined EPs can. At 7-day lead time, the

situation is reversed in that the ECMWF perturbations become more effective in explaining

forecast errors (thick and thin long dashed lines).

Results over the Northern and Southern Hemispheres are similar to those over the global

domain, while the NCEP optimally combined ensemble performs better at all lead times in

the tropics. Over the smaller North American and European domains the advantage of the
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NCEP ensemble is evident only at 1 and 2-day lead times. For example, the NCEP ensemble

can explain a similar amount of variance in the 1-day error field as the ECMWF ensemble can

in the 2-day error fields. ECMWF PECA values are very close to and sometimes higher than

those for NCEP at 3 days or longer lead times.

The PECA results presented in Fig. 4 are shown as a function of both number of members

and lead time in more detail in Figs. 5 and 6. When comparing the results from the NCEP

and ECMWF ensembles, one should keep in mind that the NCEP ensemble has 20 members,

while the ECMWF has 50. An additional difference is that the maximum lead time for NCEP

and ECMWF ensembles are 16 and 10 days respectively.

As discussed earlier, the PECA values are the lowest over the largest, global domain, while

highest over the smallest, EU domain. This indicates that ensemble perturbations can explain

much more forecast error variance over smaller domains than over larger ones. A regionally

optimized ensemble would improve the forecast capability greatly.

It is interesting to note in Figs. 6 (e) and (f) that at short lead times and over smaller

areas, an increase in ensemble membership brings significant improvement over beyond 25-30

members. This is not so at larger lead times when the error fields, on average are, are rather

well explained even by smaller ensembles.

e. Comparison with lagged forecast difference fields.

Parrish and Derber (1992) proposed to use a set of difference fields taken between 1 and 2-

day forecasts verifying on the same day, in the construction of forecast error covariance matrices.

Forecast difference fields between 24 and 48 hour lead time were generated for both the NCEP

and ECMWF control forecasts over a preceding period (1200 UTC March 5, 2001 to 1200 UTC

April 3, 2001) for explaining 1-day forecast error fields. In our experiment, we computed 30
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consecutive vector fields, i.e.

FNMC(ti) = F2−day
control(ti)− F1−day

control(ti), (6)

i = 1, 2, . . . , 30 for both NCEP and ECMWF.

The procedure, called “NMC method” (NCEP was formerly called NMC - National Me-

teorological Center), has been widely used in data assimilation schemes worldwide. In order

to determine if the use of flow dependent ensemble perturbations will provide better error

covariance information than a fixed set of short range forecast difference fields, the “NMC”

perturbation vectors were evaluated in a fashion similar to the ensemble perturbations.

The “NMC” method assumes that difference fields between different lead time forecasts

valid at the same time can be used to describe forecast error statistics. It is clear that the

correlation between the NCEP NMC vectors and NCEP forecast error (thick solid lines) is

generally higher than that between the ECMWF NMC vectors and ECMWF forecast error

(thin solid lines).

For most domains, both NPs and EPs can better explain their respective 1-day forecast

error than the “NMC” perturbations (compare dotted and solid lines in Fig. 4). The tropics

is the only domain where the optimally combined ECMWF NMC vectors perform better than

the optimally combined EPs which is probably due to the lack of initial perturbation in the

tropics in the ECMWF ensemble during this period of time (thin solid and dotted lines in Fig.

4 (d)). As we mentioned above, the introduction of TSVs on Jan 22, 2002 in the ECMWF

EPS is expected to improve its performance in the tropics. Note that the NCEP NMC vectors

exhibit clearly higher correlation with NCEP forecast error fields than ECMWF NMC vectors

with their forecast error fields (except for the Southern Hemisphere domain). The difference is
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more pronounced for smaller domains.

We also note that forecast error covariance matrices currently used in the ECMWF data

assimilation scheme are not computed by using the “NMC method”. Instead, they are based

on an ensemble of analyses generated by running data assimilations cycles with perturbed

observations (Houtekamer et al. 1996; Buizza and Palmer 1999). Our results suggest that

the construction of ensemble-based forecast error covariance matrices in place of the “NMC

method” may in general improve the performance of data assimilation schemes.

f. 3-dimensional error structure.

So far, results have been presented for one variable at one level only (500 hPa geopotential

height). In this section, we analyze the ability of the ensemble perturbations to capture forecast

error fields defined by 3 variables, temperature (T) and velocity (U, V) at 3 levels. Based on

data at 850hPa, 500hPa and 250hPa (200hPa for ECMWF), we define a new variable p: p =

[U, V, αT ], where α =
√
Cp/Tr, Cp = 1004.0Jkg−1K−1 is the specific heat at constant pressure

for dry air (Holton 1992) and Tr is a reference temperature. For each pressure level Tr is obtained

by linear interpolation from the US standard atmospheric data in NOAA/NASA/USAF (1976).

Thus the inner product < p, p > has the form of total energy as defined by Rabier et al. (1996)

and Barkmeijer et al. (1999). The dimension of p is 9m, where m is the number of grid points

over a given domain.

The results corresponding to the use of variable p are presented in Fig. 7 in a manner similar

to Fig. 3. First note that due to an increase in the degrees of freedom, correlation values in

Fig. 7 are considerably lower than in Fig. 3. While the NCEP ensemble performed better than

the ECMWF in case of one variable at one level, the ECMWF ensemble becomes more efficient

when the multi-level/multi-variable error fields are considered. This is true especially at short
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lead times, and over the smaller Northern American and European domains.

The explanation, again, is not clear but one may speculate that the vertical and /or cross-

variable structure of the ECMWF model may be more realistic than that of the NCEP model.

Note that the ECMWF ensemble is run at a higher vertical and horizontal resolution (T255L40)

than the NCEP ensemble (T126L28 for first 3.5 days, T62L28 thereafter). This explanation is

supported by the results of Richardson (2001, personal communication) who found that when

started from the same analysis the ECMWF forecast model produces higher quality forecasts

than the NCEP model.

Beyond 2-3 days lead time, the NCEP individual multi-layer/multi-variable perturbations

perform better than the ECMWF perturbations over the larger domains (global, NH, SH and

tropics). For short lead time, ECMWF ensemble forecasts gain more from optimally combined

ensembles, presumably due to the fact that they are orthogonalized at initial time while the

NCEP perturbations are not. With these gains the ECMWF optimal perturbations perform

better than the NCEP perturbations over the Northern Hemisphere, and the North American

and European regions while NCEP performs better over the Tropics. The two systems perform

similarly over the global, SH and European domains. The largest differences are observed over

the tropics where the dynamically conditioned NCEP perturbations apparently have a large

advantage over ECMWF perturbations that are purely stochastic in this area.

4 Perfect and random ensembles results

In the above section, the ability of ensemble perturbations in explaining forecast errors was

investigated. To place the results in a broader context, here we will study how well random

(lower bound of skill) or perfect (upper bound of skill) perturbations compare with the above
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results. Only NCEP ensembles will be used in the experiments below.

The dotted lines shown in Fig. 8 are identical to the solid lines in Fig. 3, except here only

8 perturbations are combined optimally to estimate the actual skill of the NCEP ensemble. To

estimate a lower bound for skill, ensemble perturbations that are valid 8 days earlier than the

forecast error, are used. These “random” perturbations have the same statistical characteristics

as the appropriate ensemble perturbations used above, but have no (or little) dynamically

relevant information. The results for this random case using 8 perturbations are presented as

the dashed lines in Fig. 8. An important result is that while at very short lead time, the

random and actual perturbations perform rather similarly, once the errors become dynamically

more organized only the actual perturbations can explain them well. This is true both for

individual and optimally combined perturbations. The results indicate that the randomly

chosen perturbations are dynamically not relevant and cannot explain flow dependent forecast

errors.

If both the model and ensemble generation were perfect, the truth could be simulated by

one of the ensemble members. Under a perfect model, perfect ensemble scenario, one of the

ensemble members will be considered truth and the remaining 4 pairs of members will be used

to explain the “error”. In this case, NPi(t) = FNCEP
i (t) − FNCEP

control(t), where i = 1, 2, . . . , 8.

The forecast error is defined as

Ej(t) = FNCEP
control(t)− FNCEP

j (t), (7)

where j 6= i. It is conceivable that the correlation between Ej(t) and NPi(t) will be relatively

high if FNCEP
j (t) is correlated with FNCEP

i (t) to certain extent. The results for this perfect

model/ensemble case are shown as the solid lines in Fig. 8.
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Note that the curve for the perfect case over the global domain runs more or less parallel to

the actual PECA curve. This confirms that, as discussed earlier, the phase space of the forecast

error undergoes a similar contraction as that of the ensemble perturbations. The fact that the

perfect curve starts well above the actual curve, on the other hand, clearly indicates that the

ensemble perturbations are too correlated with each other at initial time.

For the global domain, for example, the initial correlation value for the perfect case (thin

solid line in Fig. 8a) is as high as the correlation values between the error and individual

ensemble perturbations at around 3-day lead time (thin dotted lines in Fig. 8a). The problem is

excerberated over the smaller areas. The results suggest that by imposing more diversity among

the ensemble members on the smaller scales, the introduction of regional orthogonalization

in the rescaling of the bred vectors (Toth and Kalnay 1997) may alleviate the problem and

potentially lead to improved ensemble performance.

5 Discussion and Conclusions

One of the goals of ensemble forecasting is to generate a set of forecast scenarios that encompass

truth. The success of ensemble forecasts can be measured by a number of ways. Most existing

verification tools measure the overall skill of an ensemble forecast system. The verification

results are strongly influenced by the quality of the analysis around which the ensemble is

initialized, and the forecast model used. In this study a new metric is introduced that measures

how well individual or optimally combined ensemble perturbations can explain forecast error

variance (perturbation vs. error correlation analysis – PECA). This measure evaluates the

performance of ensemble perturbations, and not the full forecast fields, and hence deemphasizes

the effect of analysis and model differences on ensemble performance. The more closely ensemble

19



perturbations, on average, are correlated with forecast error, the better the ensemble represents

truth.

Explained forecast error variance statistics were evaluated and compared for the bred vector

based NCEP and singular vector based ECMWF ensembles. The main findings of this study

are as follows:

1) The phase space of ensemble perturbations and that of forecast errors collapse into

a smaller subspace with increasing lead time. This explains the higher correlation between

ensemble perturbations and forecast errors at longer lead times.

The rotation of all linear perturbations toward the leading LLVs on one hand, and an up-

scale propagation of perturbation energy in the nonlinear phase on the other were called upon

as possible explanations for this phenomenon. The typically enhanced performance of ensemble

forecasts with increasing lead time (e. g., higher skill of ensemble mean forecast compared to a

control forecast) is probably also related to this behavior. As Toth and Kalnay (1997) pointed

out, ensemble averaging is effective in reducing errors only if the perturbations project on actual

errors in the forecasts; otherwise it can even increase forecast errors.

2) The dynamically conditioned ensembles exhibit substantially more skill than randomly

chosen perturbations with the same statistical characteristics. Moreover, the ensembles per-

form better than a set of lagged forecast differences (that are used at several NWP centers to

construct forecast error covariance matrices in data assimilation schemes, the ”NMC method”)

in explaining short range forecast errors. This indicates that ensembles could provide the basis

for the construction of flow dependent error covariance matrices.

3) The NCEP and ECMWF ensembles generally exhibit a similar level of skill. The follow-

ing, relatively minor differences were noted:

a) Individual NCEP perturbations were found more skillful in explaining errors in a single

20



variable (500 hPa geopotential height) over the first 5-7 days lead time. This may be an

indication of more efficient initial ensemble perturbations in the NCEP ensemble.

b) The ECMWF ensemble was found better in explaining multiple level/variable error fields

in the short range (up to 3 days), especially on the smaller scales. This result, as the finding in

subsection (3c), suggests that the higher resolution ECMWF model (T255L40) may be more

realistic than the NCEP model (T126 or T62, L28). This suggestion is supported by the

results of D. Richardson (2001, personal communication) who found that the ECMWF model

generates more skillful forecasts than the NCEP model when started from the same (NCEP)

initial analysis field.

c) Optimal combinations of perturbations added more value to the ECMWF than to the

NCEP ensemble. This may be due to an orthogonalization of initial perturbations performed

for the ECMWF but not for the NCEP ensemble.

4) Interestingly, when ensembles were used to explain errors in a control forecast made with

the other center’s model their skill was dramatically reduced on the larger spatial scales. This

suggests that some large scale errors may arise due to unrealistic instabilities that are model

specific. These model specific errors can be captured only through an ensemble generated by

the same model.

5) NCEP ensemble perturbations exhibit too high correlation among themselves, especially

on smaller scales.

This suggests that an introduction of more diversity in the ensemble initial perturbations

through a regional orthogonalization procedure applied on the smaller scales may make the

ensemble more realistic and lead to improved forecast performance. The perturbation vs error

correlation analysis (PECA) scheme introduced in this study provides a useful diagnostic and

verification tool to achieve this goal.
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Figure Captions

Fig. 1. NCEP analyzed 500 hPa geopotential height field over North America (a), corresponding

8-day lead time forecast error field (b), optimally combined perturbation (c), residual error (d),

all valid at 1200 UTC May 8, 2001.

Fig. 2. As in Fig.1, but for 10-day lead time valid at 1200 UTC May 10, 2001.

Fig. 3. Correlation between 500hPa geopotential height in NCEP and ECMWF control forecast

error and the corresponding ensemble perturbations (EPs and NPs), averaged over a 30-day

period starting at 1200 UTC April 01, 2001, over (a) the global, (b) Northern Hemisphere, (c)

Southern Hemisphere, (d) Tropical, (e) North American and (f) European domains.

Fig. 4. Correlation between various number of optimally combined NPs, EPs and NMC

perturbations, and the respective forecast error for lead times of 1, 2, 3, 5 and 7 days over the

same domains as in Fig. 3.

Fig. 5. Contour display of the correlation between all different number of optimally combined

NPs and NCEP forecast errors over the same domains as in Fig. 3.

Fig. 6. As in Fig. 5, but for ECMWF ensembles.

Fig. 7. Correlation between NCEP (U, V, T at 250hPa, 500hPa and 850hPa) and ECMWF

(U, V, T at 200hPa, 500hPa and 850hPa) forecast errors and the corresponding ensemble

perturbations (EPs and NPs) over the same domains as in Fig. 3.

Fig. 8. Correlation between forecast error and 8 randomly chosen (dashed), “perfect” and

actual (dotted) ensemble perturbations over the same domain as in Fig. 3.
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