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ABSTRACT

Most existing ensemble forecast verification statistics are influenced by the quality of not only the ensemble
generation scheme, but also the forecast model and the analysis scheme. In this study, a new tool called
perturbation versus error correlation analysis (PECA) is introduced that lessens the influence of the initial errors
that affect the quality of the analysis. PECA evaluates the ensemble perturbations, instead of the forecasts
themselves, by measuring their ability to explain forecast error variance. As such, PECA offers a more appropriate
tool for the comparison of ensembles generated by using different analysis schemes.

Ensemble perturbations from both the National Centers for Environmental Prediction (NCEP) and the European
Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated and found to perform similarly. The
error variance explained by either ensemble increases with the number of members and the lead time. The
dynamically conditioned NCEP and ECMWF perturbations outperform both randomly chosen perturbations and
differences between lagged forecasts [used in the ‘‘NMC’’ (for National Meteorological Center, the former name
of NCEP) method for defining forecast error covariance matrices]. Therefore ensemble forecasts potentially
could be used to construct flow-dependent short-range forecast error covariance matrices for use in data assim-
ilation schemes.

It is well understood that in a perfectly reliable ensemble the spread of ensemble members around the ensemble
mean forecast equals the root-mean-square (rms) error of the mean. Adequate rms spread, however, does not
guarantee sufficient variability among the ensemble forecast patterns. A comparison between PECA values and
pattern anomaly correlation (PAC) values among the ensemble members reveals that the perturbations in the
NCEP ensemble exhibit too much similarity, especially on the smaller scales. Hence a regional orthogonalization
of the perturbations may improve ensemble performance.

1. Introduction

There exist a large number of verification tools for
the evaluation of ensemble forecasts (see, e.g., Stanski
et al. 1989; Atger 1999; Richardson 2000; Toth et al.
2002; Zhu et al. 2002). One type of measures evaluates
the performance of a summary indicator of a set of
forecasts such as the mean or the median value of the
ensemble distribution. Typically, the root-mean-square
(rms) error and/or the pattern anomaly correlation (PAC)
are used for this purpose. A second set of measures
evaluates probability distributions based on the ensem-
ble forecasts. Such measures include, for example, the
Brier skill score (BSS), and the ranked probability skill
score (RPSS), which measure the reliability (statistical
consistency with observations) and resolution (how dif-
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ferent reliable forecast probability values are from the
climatological distribution). A third set of related mea-
sures assesses the utility of the forecasts from a user’s
point of view. Related measures include the relative
operating characteristics (ROC) and the economic value
of forecasts (both of which are related to resolution).

When a set of ensemble forecasts are evaluated
through any of the above scores, the results will reflect
the combined effect of the quality of (i) the analysis
field around which the initial ensemble is centered, (ii)
the forecast model(s) that is used for integrating the
ensemble forecasts, and (iii) the way the initial ensemble
perturbations are formed.

In the present paper we propose a new ensemble eval-
uation method that is less sensitive to the first aspect of
ensemble performance and measures more directly the
effect of ensemble perturbations on ensemble perfor-
mance. The proposed method, called perturbation versus
error correlation analysis (PECA), is based on the com-
parison of ensemble forecast perturbations (ensemble
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forecasts minus control) and forecast error patterns (con-
trol forecast minus verifying analysis).

The motivation for the development of such an en-
semble evaluation measure is twofold. First, apart from
the above-mentioned conventional measures, we need
an additional tool that may be less sensitive to differ-
ences in the quality of the analysis scheme used to gen-
erate the ensembles, and that can be more readily applied
in studies that compare ensemble forecasts generated by
different NWP forecast centers. Second, such a tool can
be used to evaluate whether ensemble members are cor-
related with each other over various size areas at the
proper level, that is, at the level at which the error cor-
relates with ensemble perturbations. Such an analysis
in fact amounts to measuring the spread within the en-
semble but in a manner different from earlier studies
where spread is defined pointwise, in an rms sense. Here
‘‘pattern spread’’ is evaluated over predefined regions,
revealing an aspect of ensemble perturbations that has
not been thoroughly investigated before.

Here we refer to an earlier study by Molteni and
Buizza (1999), based on an EOF analysis of ensemble
perturbations. The method involves the comparison of
ensemble perturbations and error patterns. This analysis,
however, is carried out in a statistical sense only, in
terms of a comparison of the perturbation and error EOF
spectra. Therefore, the Molteni and Buizza (1999) ap-
proach, unlike the method proposed here (PECA), eval-
uates only the statistical consistency (reliability), but not
the forecast skill (resolution) of ensemble systems. An-
other study in interpreting ensemble forecasts by Ste-
phenson and Doblas-Reyes (2000) computed the mul-
tivariate skewness, kurtosis, and entropy from ensemble
forecasts based on the Monte Carlo method. The tools
proposed in this paper also were applied to the European
Centre for Medium-Range Weather Forecasts
(ECMWF) ensemble forecasts for the period of 20–30
December 1997.

After a description of the proposed method and its
properties in section 2, PECA results are presented for
the National Centers for Environmental Prediction
(NCEP) and the ECMWF ensemble forecast systems
over different areas of the globe for a selected variable
(500-hPa geopotential height) and for total energy in
section 3. Ensemble perturbations are also compared
with ‘‘NMC’’ (for National Meteorological Center, the
Former name of NCEP) type perturbations [based on
differences between short-range forecasts valid at the
same time; see Parrish and Derber (1992)]. For com-
parison, PECA results are also presented for randomly
selected ensemble perturbations, and for ‘‘perfect’’ en-
sembles where one of the ensemble members is taken
as the verifying analysis. These results are presented in
section 4. Some conclusions are offered in section 5.

2. Methodology
a. Description

Ensemble perturbations, at either numerical weather
prediction (NWP) center, are defined as the differences

between the perturbed forecasts and their respective con-
trol forecast (started from an unperturbed analysis):

C C CP (t) 5 F (t) 2 F (t),i i control (1)

where C, the originating center, is either NCEP or
ECMWF, and i 5 1, 2, . . . , N, with N 5 10 or 20 for
NCEP and 50 for ECMWF. Here, (t), (t), andC CP Fi i

(t) are ensemble perturbations, and perturbed andCFcontrol

control forecasts, respectively.
The NCEP and ECMWF ensemble forecast systems

are based on the breeding and singular-vector methods,
respectively. In both systems, the initial perturbations
are designed to span only a subspace in the phase space
representing fast-growing errors. The NCEP ensemble
perturbations, at 24-h lead time are, by definition, the
bred vectors, which, after rescaling, are used as pertur-
bations to initiate the next set of ensemble (Toth and
Kalnay 1997). The ECMWF initial perturbations are
combinations of initial and evolved singular vectors
(Buizza and Palmer 1995; Molteni et al. 1996; Bark-
meijer et al. 1999). Note that stochastic perturbations
are introduced in the ECMWF (but not the NCEP) per-
turbed forecasts to represent model-related errors. Nei-
ther ensemble system simulates the effect of imperfect
boundary conditions. The ECMWF ensemble system
had no initial perturbations in the Tropics until January
2002. The recent introduction of targeted tropical sin-
gular vectors (TSVs) (Barkmeijer et al. 2001) is ex-
pected to improve performance of the ECMWF ensem-
ble in the vicinity of tropical areas.

We refer to Toth and Kalnay (1993, 1997), Buizza
and Palmer (1995), and Molteni et al. (1996) for more
details about the two ensemble forecast systems. At the
time of writing, products consist of 10 ensemble fore-
casts both at 0000 and 1200 UTC at NCEP, and a 50-
member ensemble at 1200 UTC at ECMWF each day.

In both systems, forecast errors, EC(t), are defined as
the difference between the control forecast, [ (t)],CFcontrol

and the verifying analysis, [ (t)], from the sameCFanalysis

center:

C C CE (t) 5 F (t) 2 F (t).control analysis (2)

Since the analysis field itself has errors in it, the forecast
error defined by Eq. (2) is the difference between the
true forecast error (forecast minus the true state of the
atmosphere) and the true analysis error (analysis minus
truth). This fact will have to be considered when inter-
preting the results of this study, especially at short lead
times, when the magnitudes of analysis and forecast
errors are comparable. An a posteriori optimal combi-
nation of n perturbations is obtained by solving the least
squares problem:

n

C CMin E 2 a P . (3)O i i) )i51 L2

Having obtained ai from the above equation, the opti-
mally combined vector ( ) is defined asCPoptimal
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n

C CP 5 a P . (4)Ooptimal i i
i51

Note that the optimal combinations as defined in (3) and
(4) are based on actual error patterns. Therefore, unlike
the weighted ensemble mean of Van den Dool and Ru-
khovets (1994) that is based on past statistics, the op-
timal perturbations can only be used as a diagnostic (not
as a prognostic) tool.

The pattern anomaly correlation between any two
vectors X and Y is defined by

{X, Y}
A (X, Y) 5 . (5)c 1/2 1/2{X, X} {Y, Y}

PECA is defined as the PAC between X 5 (or X 5CPi

) and Y 5 EC. Note that the square of the cor-CPoptimal

relation, , can be considered to be the explained error2Ac

variance. In this study, PECA will be computed for
different regions. In addition to the global domain, re-
sults will also be shown for the Northern (NH, 208–
77.58N) and Southern Hemisphere extratropics (SH,
208–77.58S), the Tropics (208S–208N), North America
(NA, 208–608N, 1408–508W), and Europe (EU, 308–
77.58N, 208W–408E). Correlation values computed be-
tween individual perturbations ( ) and the forecast er-CPi

rors (EC) will be averaged over the first 10 individual
perturbations at 1200 UTC in most cases studied. In
addition, correlation values between and EC(t)CPoptimal

will also be computed for the same domains and forecast
lead times.

b. Properties

All verification scores listed in the introduction com-
pare a forecast ensemble to the verifying analysis. The
scores therefore also reflect, beyond the quality of the
ensemble generation technique, that of the initial anal-
ysis around which the ensemble is centered, and the
model that is used for integrating the ensemble forecasts.
In contrast, PECA attempts to evaluate the quality of
ensemble perturbations. This is achieved by measuring
the amount of variance that individual and/or optimally
combined ensemble perturbations can explain in fore-
cast error fields. The higher the PECA values are, the
more successful an ensemble is in achieving its goal of
capturing forecast errors. PECA values are not directly
influenced by how large the forecast errors are, but rath-
er by the ability of the ensemble perturbations to explain
the forecast error.

The above point will be illustrated through a com-
parison of PECA with PAC as it is traditionally applied
in forecast verification (PACFV). PACFV is defined as
the PAC between (Fcontrol 2 C) and (Xanalysis 2 C), where
C is the climate mean. Note that while PACFV compares
a forecast anomaly from the climate mean with the ver-
ifying analysis anomaly from the climate mean, PECA
compares the pattern of ensemble perturbations (per-
turbed minus control forecast) to that of the forecast

error (control forecast minus analysis). While PACFV
evaluates the overall quality of the forecast anomaly
with respect to the climate mean, PECA focuses on the
quality of the ensemble perturbations defined with re-
spect to the control forecast. The fact that the anomalies
defined by PECA are taken from the control forecast
(and not from the climate mean) eliminates, to a large
extent, the effect the quality of the initial analysis has
on the verification measure.

The effect of differences in the quality of models used
to generate two ensemble systems to be compared may
also be reduced when using PECA. This may be true
for random types of model errors (see Toth and Van-
nitsem 2002). Systematic model differences, however,
are expected to exert some influence on PECA. In par-
ticular, if a model, due to some imperfection, is not able
to reproduce an instability that is present in nature, an
ensemble generated by that model will not be able to
capture forecast errors associated with that kind of in-
stability. Alternatively, if a model exhibits a spurious
instability that is not present either in nature or in an-
other model, forecast errors associated with that model
will not be captured by an ensemble generated by the
other, more realistic model. Indications of both types of
model imperfection related problems will be discussed
in the next section.

When comparing ensembles generated by different
NWP centers, higher PECA values, which mean that
each ensemble perturbation can better explain its own
center’s forecast errors, are thus indication of higher
quality. A superior ensemble in terms of PECA values
may show inferior performance in terms of traditional
measures like PACFV or probabilistic scores, when a
NWP center’s analysis (and/or model) performance is
poorer than that of the others.

Beyond comparing the performance of ensembles
generated by different NWP centers, PECA can also be
used to evaluate an ensemble’s performance in terms of
the value of correlation among its members. In a perfect
(reliable, statistically consistent) ensemble, the verifying
analysis is indistinguishable from the ensemble fore-
casts. It follows that PECA values computed by sub-
stituting the actual error field by one of the ensemble
perturbations (perfect model/ensemble assumption, per-
fect PECA experiment) should be at the same level as
those computed using the actual error field. Any dis-
crepancy can be interpreted as a deficiency in the en-
semble generation technique (lack of proper represen-
tation of initial and/or model related uncertainty). The
PECA values computed in a perfect model/ensemble
environment measure the similarity between perturba-
tion patterns over a selected geographical domain (pat-
tern spread).

If the PECA values in the perfect model/ensemble
case are, for example, higher than those computed with
real error fields, it is an indication of an underdispersive
ensemble. In such an ensemble the perturbation patterns
show a lack of variability for properly explaining fore-
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cast error patterns. A careful comparison of perfect mod-
el/ensemble and regular PECA values computed over
various size domains can provide quantitative guidance
on whether the diversity of perturbation patterns is ad-
equate or needs to be improved in an ensemble. Note
that pattern spread, as will be shown in the next section,
can be insufficient even if the rms spread, computed and
averaged over individual grid points, is large enough.
While the rms spread of an ensemble can be easily
changed by multiplying the initial perturbations by a
scalar number, perfect PECA (pattern spread) is not af-
fected by such a change. The pattern spread can only
be changed through the introduction of more diversity
in the initial ensemble perturbation patterns. The ap-
parent difference between rms spread and pattern spread
indicates that PECA evaluates an aspect of ensemble
performance that has not been previously addressed.
Different kinds of daily results based on the conven-
tional measures, including the period we have analyzed
in this paper, can be found online at the NCEP Web site
(http://sgi62.wwb.noaa.gov:8080/ens/verif.html).

3. NECP and ECMWF ensemble results

a. Case study

Before a statistical analysis of PECA results accu-
mulated over a 30-day period is presented in the fol-
lowing subsections, two examples for the application of
the proposed method over the North American region
are shown below.

Figure 1a shows the NCEP 500-hPa geopotential
height analysis field valid at 1200 UTC 8 May 2001.
The analysis field shows a wavelike structure across the
higher latitudes of NA. The corresponding error pattern
of an 8-day lead time forecast initialized at 1200 UTC
30 April 2001, displayed in Fig. 1b, is dominated by a
dipole pattern over eastern Canada. In this example,
even the best combination of the NCEP ensemble per-
turbations (Fig. 1c), computed a posteriori based on the
actual forecast error, fails to explain much of the actual
error. The variance explained by the optimal ensemble
perturbation is below 40%, compared with an average
of 69% explained variance for 8-day forecast errors over
the experimental 30-day period. A large part (60%) of
the error in Fig. 1b remains unexplained by the ensem-
ble. This is also evident from Fig. 1d, which displays
the residual error R(t), defined as the part of the forecast
error that cannot be explained by Poptimal(t); that is, R(t)
5 E(t) 2 Poptimal(t). The magnitude of the optimal per-
turbation displayed was computed by projecting the
forecast error E(t) onto the corresponding optimally
combined ensemble perturbation defined by Eq. (4).

The poor PECA performance of the ensemble ini-
tialized at 1200 UTC 30 April 2001 at 8-day lead time
(Fig. 1) is in contrast with that at 10-day lead time,
shown in Fig. 2. The corresponding verifying analysis
field (1200 UTC 10 May 2001; Fig. 2a) is dominated

by a predominantly zonal flow. In this case the error
field (Fig. 2b) is characterized by a wave-train-type pat-
tern north of 408N. The optimal perturbation (Fig. 2c)
successfully explains the error pattern, including most
of the details. Ninety-four percent of the error variance
is explained (compared with an average of 71%), leav-
ing only a small fraction (6%) of the total error field
unexplained (Fig. 2d).

b. Error variance explained by respective ensembles

Figures 3a–f show the PECA correlation values com-
puted between the NCEP (solid lines) and ECMWF
(dotted) forecast error and the corresponding ensemble
perturbations for 500-hPa geopotential height over the
global, Northern and Southern Hemisphere, Tropical,
North American and European domains, respectively,
as a function of forecast lead time. Geopotential height
at 500 hPa is one of the variables with the least amount
of systematic error; thus, the correlation values, at least
in extratropics, will mainly reflect the ensemble’s ability
to explain initial value related forecast errors. The PECA
values shown in Fig. 3 are averages over a 30-day period
started at 1200 UTC 1 April 2001. The thin lines in Fig.
3 represent PECA values averaged over 10 individual
ensemble perturbations, while the corresponding thick
lines represent the PECA values for an optimal com-
bination of the individual vectors [see Eq. (4)]. Since
the forecast error is not known exactly [see Eq. (2) and
associated discussion], the relationship between the true
forecast error and the dynamically evolving ensemble
perturbations, especially at short lead times, is some-
what underestimated by the PECA values.

As expected, the optimally combined perturbation
vectors (thick lines) can explain a much larger portion
of the forecast error than the individual perturbations
(thin lines) at all lead times and over each domain for
both forecast systems. Note that over smaller areas (NA
and EU), optimal perturbations can explain a larger
amount of forecast error variance. This is due to the
fewer degrees of freedom in the error (and perturbation)
fields over the smaller areas. This may also explain the
larger sampling fluctuations (noise) observed in the re-
sults valid for smaller geographical areas. In contrast,
the PECA values computed from and averaged over
individual perturbations are not influenced by the size
of the regions.

For individual perturbations, the NCEP ensemble per-
forms better out to 7-day lead time (after which the
correlation values for the two systems become similar)
over all domains except the Tropics. Over the Tropics,
the NCEP/(ECMWF) ensemble shows superior perfor-
mance before (after) 3-day lead time. When the systems
are compared using the optimal perturbations, the NCEP
ensemble exhibits higher correlation up to 2–3-day lead
time, after which the two ensembles perform rather sim-
ilarly. We note that the initial ensemble perturbations
likely play a more important role at short lead times (0–
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5 days), while systematic model-related errors, in a rel-
ative sense, may influence the results more at longer
(6–10 days) lead times. In particular, the presence of
model bias that would not be well explained by the
dynamically evolving ensemble perturbations is ex-
pected to lead to lower PECA values.

Another important observation is that both the indi-
vidual and the optimal vectors can explain an increasing
amount of error variance as the lead time increases. This
can be explained by a collapse of the phase space con-
taining possible forecast errors into a smaller dimen-
sional subspace due to two factors. Perturbations, in-
cluding the error fields that evolve quasi linearly, are
attracted to the fastest growing nonlinear perturbations
(Toth and Kalnay 1993, 1997), which are related to the
leading Lyapunov vectors (LVs) (e.g., Buizza and Palm-
er 1995; Szunyogh et al. 1997; Reynolds and Errico
1999; Frederiksen 2000; Wei 2000; Wei and Frederiksen
2002, manuscript submitted to Nonlinear Processes
Geophys.). This may affect the rapid increase of cor-
relation values in the first 5 days. Second, when non-
linearities become dominant, the error (and perturba-
tion) fields become dominated by larger scales, leading
to a further collapse of the error subspace. This process
may explain the slower increase in PECA values beyond
5-day lead time.

c. Explained error variance with swapped ensembles

To gain a better understanding of the relative role of
ensemble perturbations and model errors, here we dis-
cuss PECA results where the first 10 NCEP perturba-
tions (NPs) are used to explain ECMWF forecast error
fields, and the first 10 ECMWF perturbations (EPs) are
used to explain NCEP forecast error fields. The results
are shown as dashed and dash–dotted lines, respectively,
in Fig. 3.

While at very short lead times the results are similar
to the ‘‘unswapped’’ cases discussed above, the indi-
vidual and optimal swapped perturbations display a
much reduced ability to explain the other center’s fore-
cast errors at longer lead times over the large domains.
At 10-day lead time for the global domain, for example,
the NCEP ensemble can explain about 40% variance in
the NCEP control forecast error whereas it explains only
10% in the ECMWF forecast error. Over the smaller
North American and European areas, however, no such
large discrepancy is present (see Figs. 3e,f).

This suggests that at longer lead times, the error fields
have a strong large-scale model-specific component that
only an ensemble generated via the same model can
capture. This error may be due to some unrealistic or
spurious instabilities that are specific to each model, but
are not present in nature. The unstable structures that
appear in the error fields will appear only in perturba-
tions generated by the same model.

For short lead times of up to a few days, the optimally
combined NPs can explain the ECMWF forecast errors

slightly better than the optimally combined EPs can ex-
plain the NCEP forecast errors over the global and NH
domains. After that the optimally combined EPs have
an advantage. Over the Southern Hemisphere and the
Tropics, however, the optimally combined EPs can ex-
plain NCEP forecast error fields better than the opti-
mally combined NPs can explain ECMWF forecast er-
rors.

The fact that the NCEP ensemble performance shows
more degradation than the ECMWF ensemble when
used to explain errors in forecasts from the other center
suggests that it may be more affected by the presence
of spurious large-scale instabilities. This result is con-
sistent with that of Saha (2001) who, using a technique
developed by Van den Dool et al. (2000), found that
ECMWF forecasts contain less large-scale systematic
error than NCEP forecasts.

Over several domains, the inclusion of a few ECMWF
members with the NCEP ensemble leads to slightly
higher explained error variance for the NCEP forecast
error fields (dash–dot–dotted lines) at intermediate lead
times. At short and longer lead times, however, such a
mixed ensemble performs worse than a pure NCEP en-
semble. The inclusion of NCEP perturbations improves
(degrades) the ECMWF ensemble performance before
(after) 3-day lead times.

d. The effect of ensemble size

To the extent ensemble perturbations are independent,
optimal combination of more ensemble members is ex-
pected to lead to higher explained error variance (cf.
thick and thin lines in Fig. 3). In this subsection, we
explore the effect of increased ensemble membership in
more detail.

Figure 4 shows the PECA values between various
number of optimally combined NPs and EPs and the
respective NCEP and ECMWF forecast error fields,
where results are displayed for various lead times (1, 2,
3, 5, and 7 days). The results from NCEP and ECMWF
are indicated by thick and thin lines, respectively.

While the ECMWF ensemble has 50 members initi-
ated at 1200 UTC, NCEP has only 10 members at both
0000 and 1200 UTC. To study the effect of a larger
ensemble for the NCEP system, we combined the 1200
UTC and the subsequent 0000 UTC NCEP ensembles.
The choice for the use of the subsequent (and not pre-
ceding) ensemble was motivated by the fact that the
preceding, longer lead time ensembles would have led
to higher correlations (see Fig. 3).

As expected, increasing the number of ensemble per-
turbations increases the correlation between the forecast
error fields and the optimally combined perturbations
for both centers. For the global domain (Fig. 4a), for
lead times up to 5 days (thick and thin dotted lines,
respectively), any available number of optimally com-
bined NPs can explain a slightly larger percentage of
forecast error than the same number of optimally com-
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FIG. 3. Correlation between 500-hPa geopotential height in NCEP and ECMWF control forecast error and the
corresponding ensemble perturbations (NPs and EPs), averaged over a 30-day period starting at 1200 UTC 1 Apr 2001,
over the (a) global, (b) NH, (c) SH, (d) tropical, (e) NA, and (f ) EU domains.
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FIG. 3. (Continued )

bined EPs can. At 7-day lead time, the situation is re-
versed in that the ECMWF perturbations become more
effective in explaining forecast errors (thick and thin
long dashed lines).

Results over the Northern and Southern Hemispheres
are similar to those over the global domain, while the
NCEP optimally combined ensemble performs better at
all lead times in the Tropics. Over the smaller North
American and European domains the advantage of the
NCEP ensemble is evident only at 1- and 2-day lead
times. For example, the NCEP ensemble can explain a
similar amount of variance in the 1-day error field as
the ECMWF ensemble can in the 2-day error fields.
ECMWF PECA values are very close to and sometimes
higher than those for NCEP at 3-day or longer lead
times.

It is interesting to note in Figs. 4e and 4f that at short
lead times and over smaller areas, an increase in en-
semble membership brings significant improvement
even beyond 30–40 members. This is also true at larger
lead times when the error fields, on average, are rather
well explained even by a smaller number of ensembles.

e. Comparison with lagged forecast difference fields

Parrish and Derber (1992) proposed to use a set of
difference fields taken between 1- and 2-day forecasts
verifying on the same day, in a technique called the
NMC method for the construction of forecast error co-

variance matrices. This technique has frequently been
used in data assimilation schemes worldwide. To test
how efficient the lagged forecast difference fields are
in explaining 1-day forecast error fields, when compared
to ensemble perturbations, difference fields between 24-
and 48-h lead time forecasts were generated for both
the NCEP and ECMWF control forecasts over a period
preceding the experimental ensemble date (1200 UTC
5 March–1200 UTC 3 April 2001). In our experiment,
we computed 30 consecutive vector fields; that is,

22day 12dayF (t ) 5 F (t ) 2 F (t ),NMC i control i control i (6)

i 5 1, 2, . . . , 30 for both NCEP and ECMWF.
The NMC perturbation vectors were evaluated in a

fashion similar to the ensemble perturbations using the
same control forecast error fields from NCEP and
ECMWF as in Fig. 3. Different numbers of NMC vec-
tors were optimally combined, like the ensemble per-
turbations, using equations similar to (3) and (4).

The NMC method assumes that difference fields be-
tween different lead time forecasts valid at the same
time can be used to describe forecast error statistics. It
should be mentioned that there are some differences
between the way the NMC vectors are generated in this
paper and in practical implementations of the NMC
method in three-dimensional variational (3DVAR) data
assimilation schemes. For instance, in this paper the
NMC vectors are generated for a period just prior to
their use, while in practical data assimilation imple-
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FIG. 4. Correlation between various numbers of optimally combined NPs, EPs, and NMC perturbations, and the
respective forecast error for lead times of 1, 2, 3, 5, and 7 days over the same domains as in Fig. 3.
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FIG. 4. (Continued )

mentations, the statistics are generated over a fixed pe-
riod in the past. The NMC vectors are averaged over
space and possibly over the wavenumber spectrum as
well. Therefore the results presented may overestimate
the value of NMC vectors in explaining flow-dependent
error variance.

By comparing the dotted and solid lines in Fig. 4, it
becomes clear that for most domains, the ensemble per-
turbations can better explain their respective 1-day fore-
cast error than the NMC perturbations. The Tropics is
the only domain where the optimally combined
ECMWF NMC vectors perform better than the opti-
mally combined EPs, which is probably due to the lack
of initial perturbation in the Tropics in the ECMWF
ensemble during this period of time (thin solid and dot-
ted lines in Fig. 4d). As we mentioned above, the in-
troduction of TSVs on 22 January 2002 in the ECMWF
Ensemble Prediction System (EPS) is expected to im-
prove its performance in the Tropics. Note that the
NCEP NMC vectors exhibit clearly higher correlation
with NCEP forecast error fields than ECMWF NMC
vectors with their forecast error fields (except for the
Southern Hemisphere domain). The difference is more
pronounced for smaller domains. Note that systematic,
lead-time-dependent errors (i.e., model drift) may be
captured by lagged forecast differences, but not by the
ensemble forecasts. Possibly larger regional biases in
the NCEP ensemble may contribute to the difference

found between the performance of the two centers’
NMC vectors.

We also note that forecast error covariance matrices
currently used in the ECMWF data assimilation scheme
are not computed by using the NMC method. Instead,
they are based on an ensemble of analyses generated by
running data assimilations cycles with perturbed obser-
vations (Houtekamer et al. 1996; Buizza and Palmer
1999). Our results suggest that the construction of en-
semble-based forecast error covariance matrices in place
of the NMC method may in general improve the per-
formance of data assimilation schemes.

f. Three-dimensional error structure

So far, results have been presented for one variable
at one level only (500-hPa geopotential height). In this
section, we analyze the ability of the ensemble pertur-
bations to capture forecast error fields defined by three
variables, temperature (T) and velocity (U, V) at three
levels. Based on data at 850, 500, and 250 hPa (200
hPa for ECMWF), we define a new variable p: p 5 (U,
V, aT), where a 5 , Cp 5 1004.0 J kg21 K21ÏC /Tp r

is the specific heat at constant pressure for dry air (Hol-
ton 1992) and Tr is a reference temperature. For each
pressure level Tr is obtained by linear interpolation from
the U.S. Standard Atmospheric, 1976. Thus the inner
product ^p, p& has the form of total energy as defined
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FIG. 5. Correlation between NCEP (U, V, T at 250, 500, and 850 hPa) and ECMWF (U, V, T at 200, 500, and 850 hPa)
forecast errors and the corresponding ensemble perturbations (NPs and EPs) over the same domains as in Fig. 3.
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FIG. 5. (Continued )

by Rabier et al. (1996) and Barkmeijer et al. (1999).
The dimension of p is 9 m, where m is the number of
grid points over a given domain.

The results corresponding to the use of variable p are
presented in Fig. 5 in a manner similar to Fig. 3. Note
first that due to an increase in the degrees of freedom,
PECA values for the optimally combined ensemble per-
turbations in Fig. 5 are considerably lower than in Fig.
3. While the individual NCEP ensemble perturbations
performed better than the ECMWF for the case with
one variable at one level, the ECMWF ensemble be-
comes more efficient when the multilevel/multivariable
error fields are considered. This is true especially at
short lead times, and over the smaller Northern Amer-
ican and European domains.

The explanation, again, is not clear but one may spec-
ulate that the vertical and/or cross-variable structure of
the ECMWF model may be more realistic on the smaller
scales than that of the NCEP model. Note that the
ECMWF ensemble is run at a higher vertical and hor-
izontal resolution (T255L40) than the NCEP ensemble
(T126L28 for first 3.5 days, T62L28 thereafter). This
explanation is also supported by the results of D. Rich-
ardson (2001, personal communication), who found that
when started from the same analysis the ECMWF fore-
cast model produces higher quality forecasts than the
NCEP model.

Beyond 2–3-day lead time, the NCEP individual mul-
tilayer/multivariable perturbations perform better than

the ECMWF perturbations over the larger domains
(global, NH, SH, and Tropics). For short lead times,
ECMWF ensemble forecasts gain more from optimally
combined ensembles, presumably due to the fact that
they are orthogonalized at initial time while the NCEP
perturbations are not. With these gains the ECMWF
optimal perturbations perform better than the NCEP per-
turbations over the Northern Hemisphere, and the North
American and European regions, while NCEP remains
better over the Tropics. The optimal perturbations from
the two systems perform similarly over the global and
SH domains. The largest differences are observed over
the Tropics where the dynamically conditioned NCEP
perturbations apparently have a large advantage over
ECMWF perturbations that are purely stochastic in this
area.

4. Results for perfect and random ensembles

In the above section, the ability of ensemble pertur-
bations in explaining forecast error fields was investi-
gated. To place the results in a broader context, here we
will study how well random (lower bound of skill) or
perfect (upper bound of skill) perturbations compare
with the above results. Only NCEP ensembles will be
used in the experiments below.

The dotted lines shown in Fig. 6 are identical to the
solid lines in Fig. 3, except here only eight perturbations
are combined optimally to estimate the actual skill of
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FIG. 6. Correlation between forecast error and eight randomly chosen (dashed) ‘‘perfect’’ and actual (dotted)
ensemble perturbations over the same domain as in Fig. 3.
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FIG. 6. (Continued )

the NCEP ensemble. To estimate a lower bound for skill,
ensemble perturbations that are valid 8 days earlier than
the forecast error are used. These ‘‘random’’ perturba-
tions have the same statistical characteristics as the ap-
propriate ensemble perturbations used above, but have
no (or little) dynamically relevant information. The re-
sults for this random case using eight perturbations are
presented as the dashed lines in Fig. 6. An important
result is that while at very short lead time the random
and actual perturbations perform rather similarly, once
the errors become dynamically more organized only the
actual perturbations can explain them well. This is true
for both individual and optimally combined perturba-
tions. The results indicate that the randomly chosen per-
turbations are dynamically not relevant and cannot ex-
plain flow-dependent forecast errors.

When comparing PECA values for the real and ran-
dom ensemble cases, one should also note that the score
lowering effect of the inclusion of analysis errors [see
Eq. (2) and associated discussion] is expected to affect
the results for the dynamically relevant real ensemble
more than for the random ensemble. Therefore PECA
results based on the true forecast error may show more
advantage for the real ensemble than seen in Fig. 6,
especially at shorter lead times.

If both the model and ensemble generation techniques
were perfect, the truth could be simulated by one of the
ensemble members. Under a perfect model, perfect en-
semble scenario, one of the ensemble members will be

considered the truth and the remaining four pairs of mem-
bers will be used to explain the ‘‘error.’’ In this case,
NPi(t) 5 (t) 2 (t), where i 5 1, 2, . . . , 8.NCEP NCEPF Fi control

The forecast error in this case is defined as
NCEP NCEPE (t) 5 F (t) 2 F (t),j control j (7)

where j ± i. Note that the perfect PECA values defined
above and shown as the solid lines in Fig. 6 are only a
function of correlation among the members of the en-
semble.

In Fig. 6 we first note that the curve for the perfect
case over the global domain runs more or less parallel
to the actual PECA curve. This confirms that, as dis-
cussed earlier, the phase space of the forecast error un-
dergoes a contraction similar to that of the ensemble
perturbations. The fact that the perfect curve starts well
above the actual curve, on the other hand, clearly in-
dicates that the ensemble perturbations are too corre-
lated with each other at the initial time, given their low
level of skill in explaining forecast errors (cf. low actual
PECA values; dotted curve in Fig. 6).

For the global domain, for example, the initial cor-
relation value for the perfect case (thin solid line in Fig.
6a) is as high as the correlation between the error and
individual ensemble perturbations at around 3-day lead
time (thin dotted lines in Fig. 6a). The problem is ex-
cerberated over the smaller areas. The results suggest
that by imposing more diversity among the ensemble
members on the smaller scales, the introduction of re-
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gional orthogonalization in the rescaling of the bred
vectors (Toth and Kalnay 1997) may alleviate the prob-
lem and potentially lead to improved ensemble perfor-
mance. This conjecture is corroborated by the results of
Wang and Bishop (2002), who found that the use of the
ensemble transform Kalman filter technique (ETKF;
Bishop et al. 2001) for rescaling and orthogonalizing
ensemble perturbations improved the performance of a
bred ensemble.

5. Discussion and conclusions

One of the goals of ensemble forecasting is to gen-
erate a set of forecast scenarios that encompasses truth.
The success of ensemble forecasts can be measured in
a number of ways. Most existing verification tools mea-
sure the overall skill of an ensemble forecast system.
The verification results from such methods are strongly
influenced by the quality of the analysis around which
the ensemble is initialized and the forecast model used,
which reduces their value in assessing ensemble tech-
niques. In this study a new metric is introduced that
measures how well individual or optimally combined
ensemble perturbations can explain forecast error var-
iance (perturbation versus error correlation analysis, or
PECA). This measure evaluates the performance of en-
semble perturbations and not the full forecast fields. The
more closely ensemble perturbations, on average, are
correlated with forecast error, the better the ensemble
represents the truth. By evaluating ensemble perturba-
tions instead of full forecast fields, PECA reduces the
influence of the magnitude of initial errors (which re-
flects the quality of the analysis scheme) and offers a
more direct measure of ensemble performance.

Like all other common measures of forecast perfor-
mance in numerical weather forecasts, such as root-
mean-square and anomaly correlation, PECA values
also depend on the regions and variables. When one
compares the performances of two different forecasts
from different models or centers, it is implied that the
measures will be taken over the same region and using
the same set of variables so as to have a fair comparison.

Explained forecast error variance statistics were eval-
uated and compared for the bred vector based NCEP
and singular vector based ECMWF ensembles. The
main findings of this study are as follows.

1) The phase space of ensemble perturbations and that
of forecast errors collapse into a smaller subspace
with increasing lead time. This explains the higher
correlation between ensemble perturbations and
forecast errors at longer lead times.

The rotation of all linear perturbations toward the
leading local Lyapunov vectors (LLVs) on one hand,
and an upscale propagation of perturbation energy
in the nonlinear phase on the other, were called upon
as possible explanations for this phenomenon. The
typically enhanced performance of ensemble fore-

casts with increasing lead time (e.g., higher skill of
the ensemble mean forecast compared to a control
forecast) is probably also related to this behavior. As
Toth and Kalnay (1997) pointed out, ensemble av-
eraging is effective in reducing errors only if the
perturbations project on actual errors in the forecasts;
otherwise, it can even increase forecast errors.

2) The dynamically conditioned ensembles exhibit sub-
stantially more skill than randomly chosen pertur-
bations with the same statistical characteristics.
Moreover, the ensembles perform better than a set
of lagged forecast differences (which are used at
several NWP centers to construct forecast error co-
variance matrices in data assimilation schemes, using
the NMC method) in explaining short-range forecast
errors. This indicates that ensembles could provide
the basis for the construction of flow-dependent error
covariance matrices.

3) The error variance explained by a posteriori opti-
mally combined perturbations increases with ensem-
ble membership. The extrapolation of the results sug-
gests that at least 100/(200) members are needed to
explain most of the short-range (1 day) forecast error
on continental/(global) scales. These numbers set a
minimum requirement for the size of an ensemble
to be used in fully ensemble-based data assimilation
studies.

4) The NCEP and ECMWF ensembles generally exhibit
a similar level of skill. The following, relatively mi-
nor differences were noted: (i) Individual NCEP per-
turbations were found to be more skillful in explain-
ing errors in a single variable (500-hPa geopotential
height) over the first 5–7 days of lead time. This may
be an indication of more efficient initial ensemble
perturbations in the NCEP ensemble. (ii) The
ECMWF ensemble was found to be better in ex-
plaining multiple level/variable error fields in the
short range (up to 3 days), especially on the smaller
scales. This result, as shown in the finding in section
3c, suggests that the higher-resolution ECMWF
model (T255L40) may be more realistic than the
NCEP model (T126 or T62, L28). This suggestion
is supported by the results of D. Richardson (2001,
personal communication), who found that the
ECMWF model generates more skillful forecasts
than the NCEP model when started from the same
(NCEP) initial analysis field. (iii) Optimal combi-
nations of perturbations added more value to the
ECMWF than to the NCEP ensemble. This may be
due to an orthogonalization of initial perturbations
performed for the ECMWF but not for the NCEP
ensemble.

5) Interestingly, when ensembles were used to explain
errors in a control forecast made with the other cen-
ter’s model, their skill was dramatically reduced on
the larger spatial scales. This suggests that some
large-scale errors may arise due to unrealistic insta-
bilities that are model specific. These model-specific
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errors can be captured only through an ensemble
generated by the same model.

6) The experiments where the two centers ensembles
were combined gave mixed results when compared
to the use of a single center’s ensemble in explaining
that center’s ensemble error fields. The PECA results
do not favor a multimodel approach to ensemble
forecasting.

7) NCEP ensemble perturbations exhibit too high cor-
relation among themselves, especially on smaller
scales. This suggests that an introduction of more
diversity in the ensemble initial perturbations
through a regional orthogonalization procedure ap-
plied on the smaller scales may make the ensemble
more effective and lead to improved forecast per-
formance. The perturbation versus error correlation
analysis (PECA) scheme introduced in this study
provides a useful diagnostic and verification tool to
achieve this goal.
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