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Abstract

The primary goal of this paper is to explore why the use of increased hor-
izontal resolution enhances the performance of the National Centers for Envi-
ronmental Prediction (NCEP) global ensemble mean forecasts. Numerical ex-
periments were carried out with a 10-member (5-pair) 0000 UTC subset of the
NCEP global ensemble forecasts for a 30-day period during January-February
1999. Four sets of ensembles and corresponding control forecasts were generated.
One ensemble was identical to the then operational T62 horizontal resolution
NCEP ensemble, while in the other three ensembles the horizontal resolution
was increased to T126 out to day-1, day-3, and day-15 forecast lead times.

Anomaly correlation and root-mean-square error, also decomposed into bias
and variance terms, were used to evaluate the control and ensemble mean fore-
casts. As expected, the use of a higher resolution model improves both scores. A
newly developed condition for optimal smoothing indicates that the root-mean-
square error for the high resolution 10-member ensemble is nearly as low as it
can be given its anomaly correlation. Therefore, further significant improve-
ments in the ensemble mean forecasts can be achieved only through improved
anomaly forecast patterns, and not through additional smoothing.

The two main meteorological aspects of the higher resolution induced error
reduction for both the control and the ensemble mean forecasts are (1) the
maintenance of a more realistic time-mean flow; and (2) the better prediction
of high frequency transients along the mid-latitude storm tracks. The effect
of increased horizontal resolution, however, is markedly more positive on the
ensemble mean than on the control forecasts. This is because the ensemble mean
(1) efficiently filters out unpredictable small scale features at high resolution;
and (2) accentuates the relatively large systematic errors present in the low
resolution integrations.



1 Introduction

The long time limit of the root-mean-square (rms) error is /2 times larger for a
numerical weather forecast than for a prediction based on climatology. This hap-
pens because a single numerical model forecast provides the same level of details
at all lead times, irrespective of the various predictability time limits associated
with different weather phenomena. Therefore, single forecasts, correctly pre-
dicting some deviations from the climate, become aggravated by unpredictable
features which leads to a rapid degradation of forecast quality in terms of rms
error. Ensemble forecasting was introduced partly to remedy this problem. As
Leith (1974) pointed out ensemble averaging is a potentially optimal nonlinear
filter since the ensemble mean would be the best unbiased estimate of the true
state of the atmosphere in an rms sense if (1) the model was identical with the
real atmosphere; (2) the climate attractor was ergodic (i.e. the climatological
phase-space and time averages were equal), and (3) the ensemble was perfect
(i.e., it had infinite number of members and the members represented equally
likely states of the atmosphere). In fact, several papers documented that the
mean of an ensemble of numerical weather forecasts becomes clearly superior
to a single control forecast as forecast lead time increases, even under realistic
conditions when imperfect model and ensemble formulation is used (e.g. Toth
and Kalnay 1993; Houtekamer and Derome 1995; Molteni et al. 1996).

The main goal of this paper is to explore why the use of increased horizontal
resolution enhances the performance of the ensemble as a nonlinear filter. This
research was motivated by the finding, also presented here, that the increased
horizontal resolution has a much more positive effect on the performance of the
ensemble mean than on the quality of the single deterministic forecasts. Our
work started in 1999, when upgrades to the global Ensemble Forecasting System
(EFS) could be considered following the acquisition of a new Class-VIII parallel
supercomputer at the National Center for Environmental Prediction (NCEP).
Encouraged by studies at the European Centre for Medium-Range Weather
Forecasts (ECMWF), which revealed the relative importance of adequate model
resolution for their ensemble prediction system (Buizza et al. 1998) , a possible
increase in horizontal resolution was considered first.

Since ensemble averaging improves the forecast scores by smoothing the me-
teorological fields, a thorough assessment of the quality of an EFS should also
consider whether this filtering effect properly reflects in an inverse fashion the
level of predictability that typically decreases with increasing lead time. Leith
(1974) and Houtekamer and Derome (1995) compared the performance of the
ensemble mean and a forecast that was empirically smoothed based on forecast
error history information. In this paper, we present an alternative approach to
assess whether the smoothing effect of an ensemble is optimal. This includes the
derivation of a condition for optimal smoothing and the decomposition of the
rms error into bias and forecast error variance terms. The latter technique is rou-
tinely used to monitor and analyze deterministic numerical forecasts at NCEP
(White, 1999), but it has not been used with ensembles. We will demonstrate
that separating the bias component of the rms error can be rather instructive



since this term quantifies the difference between our model and reality in a time
mean sense. Apparently, ensemble averaging cannot be expected to remove this
part of the error if all members of the ensemble are generated by the same
model.

The structure of the paper is as follows. Section 2 details the set-up of
the numerical experiments. Section 3 describes the theoretical relationships be-
tween rms error, anomaly correlation and the rms distance between forecasts
and climatology, followed by related quantitative results for the control and
mean forecasts at various resolutions. [Verification results based on probabilis-
tic verification scores, like the Brier and the ranked probability scores (Wilks
and Hamill 1995; Talagrand et al. 1999; Richardson 2000), are presented in
a follow-up study (Toth et al. 2002)]. The decomposition of the mean square
error into bias and forecast error variance terms, with associated results for the
different forecasts are presented in section 4. Section 5 offers a discussion of the
verification results, while section 6 presents the conclusions.

2 Experimental set-up

2.1 The sample time period

All experiments were carried out with a 10-member (5-pair), 0000 UTC subset
of the NCEP global ensemble forecasts. Error statistics were accumulated for a
30-day period from January 13 through February 11, 1999. Though the choice
of a contingent time period has the disadvantage of possibly having strong auto-
correlations between errors of consecutive days, thus limiting the effective size
of the statistical sample, it has the advantage that persistent, slowly varying
error patterns can be detected in the ensemble.

This particular 30 day period, overlapping with the 1999 Winter Storm
Reconnaissance program, was selected because a large number of diagnostics
prepared for an earlier study (Szunyogh et al. 2000) were already available.
Here, we show only eddy statistics that are crucial to exploring the relation-
ship between the location of the storm tracks and the geographical distribution
of forecast error reductions due to increased horizontal resolution. The eddy
quantities are defined by the deviation from the monthly mean and the 500 hPa
geopotential height variance, the meridional temperature flux and the vertical
temperature flux are shown in Figure 1. Overlapping regions of pole-ward and
upward temperature fluxes mark areas of available potential to eddy kinetic en-
ergy conversion. The three main regions of baroclinic energy conversions (North
Pacific, North Atlantic, and SH mid-latitudes) are well distinguishable. The sea-
sonal differences are also well marked by the more intense temperature fluxes
in the Northern Hemisphere. The propagation of the baroclinic wave packets in
the Northern Hemisphere was also well documented for the sample period by
Fig. 4 in Szunyogh et al. (2000).
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(a) Geopotential height variance at the 500 hPa
pressure level. Contour interval is 10000 gpm?. (b) Meridional temperature
ssure level. Contour interval is 10 Km/s. (c) Vertical
700 hPa pressure level. Contour interval is 0.2 KPa/s.



2.2 The operational ensemble configuration

Until June 2000, the implementation of the operational global EFS at NCEP
consisted of 17 16-day forecasts. All forecasts were made with the NCEP
Medium Range Forecast (MRF) model (Derber et al. 1998). In addition to
the ten and four perturbed integrations made with a T62 horizontal resolution
28 vertical levels version of the model at 0000 and 1200 UTC respectively, two
control integrations were made at 0000 UTC, and one at 1200 UTC. The high
resolution control forecasts were run at T126 (T170 from June 15 through Octo-
ber 5 1998, and after January 24 2000) resolution with 28 (42) vertical levels out
to day-7 and day-3 (3.5-day) lead times at 0000 and 1200 UTC respectively, af-
ter which the fields got truncated to T62 resolution and the runs were extended
to day-16 lead time (Tracton and Kalnay 1993; Toth and Kalnay 1997)

While ECMWF uses leading initial and evolved singular vectors defined by
a norm with energy dimension (Molteni et al. 1996; Buizza et al. 1999), NCEP
runs breeding cycles (Toth and Kalnay 1993, 1997; Iyengar et al. 1996) to
generate the perturbed initial conditions. In a breeding cycle, first half of the
difference between the initially oppositely perturbed pairs of 24-hour forecasts
is taken. This three dimensional difference field is then rescaled by a two-
dimensional regional rescaling factor, (A, ¢,t), which is varying with the geo-
graphical location, but is fixed for all model variables at all levels. The rescaling
factor is defined by the ratio r(\, ¢,t) = mask(\, ¢,t)/K (A, ¢,t). Here, mask
denotes the daily varying average RMS difference between two independently
run analysis cycles, computed using the rotational kinetic energy at the 500 hPa
pressure level as inner product and K (A, ¢,t) is the square root of the rota-
tional kinetic energy at the 500 hPa pressure level for the difference field to
be rescaled. Both fields are smoothed by a Gaussian filter before the ratio is
computed, removing most of the variance in the kinetic energy field associated
with wave-numbers larger than 8-9. The purpose of this rescaling procedure is
to ensure that the initial ensemble perturbations are representative of the typ-
ical large-scale geographical distribution of the analysis uncertainty. The only
reason why the large scale distribution of the rotational kinetic energy of the
initial perturbations can depart from the mask at the 500 hPa level is that the
size of the initial perturbations is never increased during rescaling: the value of
r is set to 1 at locations where it would be larger otherwise.

The regional rescaling algorithm was designed with the aim of retaining
the structure of synoptic and smaller scale features developed in the 24-hour
evolved perturbations. Thus we can expect that by increasing the horizontal
resolution the initial structure of the bred perturbations will also change since
the magnitude and the structure of the 24-hour evolved perturbations may be
different in the different resolution models and only the largest scale components
of these perturbations are constrained strongly by the regional rescaling.



2.3 The experimental ensemble configurations

Four sets of ensembles were generated. The first ensemble (referred to as T62
hereafter) was an almost exact replica of the 0000 UTC low-resolution subset
of the operational ensemble, while in the other three ensembles (referred to as
D1, D3 and T126 hereafter) the horizontal resolution was increased to T126 out
to day-1, day-3, and day-15 forecast lead times. To save computer time the D1
(D3) runs were stopped after 4 (7) days of model integration. A control forecast,
started from the unperturbed analysis, was also run for each ensemble following
the same truncation strategy that was applied to the associated ensemble.

Testing ensemble configurations that changed their resolution after 1 or 3
days was dictated by the operational constraint that an ensemble integrated
at resolution T126 up to 16 days would not be affordable at NCEP in the
near future. We note, however, that reducing the horizontal resolution of high
resolution MRF control forecasts after the first few days of model integration
has been a long time practice at NCEP. This strategy is based on the experience
that increased horizontal resolution for the first few days of model integration
has significant positive impact on forecast quality for the entire 16-day forecast
range; a reduction of the horizontal resolution after a few days does not degrade
the skill scores substantially. The general belief is that this is due to to the
better quality of the higher resolution analysis and the shorter predictability
time limit of the smaller scale weather phenomena. For example, experience
shows that an analysis taken from a T126 cycle and truncated to resolution T62
usually leads to a better T62 forecast than the one that was started from an
analysis of a T62 cycle (S. Tracton 1993, personal communication). Because
of this, the T62 perturbed initial analyses of the operational NCEP EFS have
been created around a T126 analysis truncated to resolution T62 (Tracton and
Kalnay 1993).

It must be emphasized that reducing resolution after a few days of model
integration is more than a simple truncation (spectral filtering) of the meteoro-
logical fields. It also means using a different model after the truncation. Most
importantly, the reduced resolution model at the bottom of the atmosphere is
forced by boundary conditions/orography that are different from those used in
the high resolution model. Secondly, the physical parameterization schemes may
behave differently in the different horizontal resolution models. Finally, while
at T62 resolution the total wave-number of the smallest retained feature is 62,
not all interactions between structures with wave-numbers smaller than 62 are
retained (Machenauer 1991; Kadar et al. 1998). In fact, all of those interac-
tions are neglected which would result in entities characterized by wave-numbers
larger than 62. Consequently, the interactions between features characterized
by total wave-numbers smaller than 62 are better represented, especially for the
high wave-number components close to the cut-off wave-number 62, in a T126
version of the model.

The bred perturbations were generated by T62 model runs for the T62 en-
semble, and by T126 model runs for the initially T126 resolution ensembles.
The high and low resolution breeding cycles were run by using the mask that



was designed for the operational T62 ensemble. More precisely, the mask for the
T126 breeding cycle was prepared by first transforming the mask to the T62
spectral space from the associated Gaussian grid, then filling up the spectral
coefficients related to wave-numbers higher than 62 by zeros, and transforming
the field to the high resolution Gaussian grid. Since the mask was the same
for the high and the low resolution breeding cycles and the Gaussian filter that
was used to compute the rescaling factor preserves the areal average of a scalar
quantity for the globe, the global mean of the bred perturbations was identical
for the two cycles. This means, that the differences between the performance of
the different resolution ensembles reported in this paper, are due to differences
in the local magnitude and the structure of the bred perturbations.

The initial conditions for the ensemble members were created by adding the
bred perturbations to the operational T126 analysis of NCEP (truncated to T62)
in the initially high resolution (low resolution) ensembles. The breeding cycles
were initiated with the operational bred perturbations from January 3 1999.
Since these perturbations had horizontal resolution T62 the spectral coefficients
related to higher wave-numbers in the T126 runs were simply set to zero. As it
was expected, after 3-4 days of running the breeding cycle at resolution T126
no transient behavior could be observed in the initially high resolution cycles.

After interpolating the forecasts and analyses to a 2.5 x 2.5° grid, all ensem-
ble and control forecast products were verified against the control analysis. We
note that the resolution of this verification grid is lower than the resolution of the
T62 analysis-forecast fields, which means that only features resolved in both the
low and the high resolution runs are verified and the effect of high wave-number
modes in the T126 simulations are taken into account only implicitly.

Verification results are presented for the 500 hPa geopotential height in the
Northern Hemisphere (NH) and Southern Hemisphere (SH) mid-latitude re-
gions. The NH (SH) verification region is defined by the 30N-70N (30S-70S)
latitude band.

Some of the verification statistics require the knowledge of climatology at
the grid-points on a daily basis. In this study, the computation of climatology
(denoted by c¢), is done in two steps: first, the monthly averages of 36 years of
NCEP reanalyses (Kalnay et al. 1996) are taken and then the daily values are
computed by a linear time interpolation assuming that the monthly average is
representative at the middle of a given month.

3 Rms error, anomaly correlation, and ensemble
smoothing

3.1 Condition for optimal smoothing

The most widely used forecast score for the verification of the ensemble mean
is the rms error (RMS) defined as the root-mean-square distance between the



forecast and the verifying data set

RMS = /< (f —a)?>. (1)

Here, f is the forecast and a is the verifying analysis, both given on the 2.5° x 2.5°
grid. The angled brackets stand for the mean that will be taken over the 30-
day sample period and over all points within the verification domain. When
definition of a local error is needed, the mean is taken over the 30-day sample
period at each grid point. This time-mean is denoted by an overbar, for instance,

the local rms error is
RMS(X, ¢) =/ (f —a)*. (2)

The mean-square error (MS), the square of RM S, can be decomposed (Simmons
et al. 1995) as

MS=<(f-a)?’>=<(f-c¢)?’>+<(a—c)’>-2<(f-c)a—c)>. (3)

When ¢ is computed on a daily basis and averages are taken for large regions
over an extensive time period, < (f —¢) > and < (a — ¢) > become negligible.
In this sense, the first (second) term of the rhs. in Eq. 3 is usually referred to as
forecast (analysis) variance. Here, especially when only the time averages are
taken, < (f —c) > (< (a—c) >) is not negligible and for clarity the mean-square
distance between the forecasts (analyses) and the climatology will be referred
to as the mean-square forecast (analyzed) anomaly.

For a good NWP analysis-forecast system the mean-square analyzed anomaly
provides a good estimate of the climate variance for the selected sample period
and the mean-square forecast anomaly (first term of rhs. in Eq.3) is near to
the mean-square analyzed anomaly (second term of rhs. in Eq.3) for all fore-
cast lead times. Since the covariance between the analyzed and the forecast
anomalies (third term of rhs. in Eq.3) goes to zero as the forecast lead time
increases, the long-time limit of MS (RMS) is twice (v/2)as large as the (root-
Jmean-square analyzed anomaly. When climatology is used as forecast (f=c)
the first and the third term on the rhs. in Eq.3 are identically zero. This means
that the long time limit of MS (RMS) is reduced to the (root-)mean-square
analyzed anomaly, but at the price of significantly increasing the short-term
forecast errors. The use of an appropriate ensemble has the benefit of retaining
the forecast anomaly (f — ¢) at short lead times, similarly to a single forecast,
and removing all anomalies, like a climatology based forecast, in the long time
limit.

Operational EFS systems are not perfect. Most obviously, their size is lim-
ited and even if they were otherwise perfect the RMS error in the mean of an
m-member ensemble would converge to /(1 + m~") times the mean-square an-
alyzed anomaly (Leith 1974). It means that if the model and the 10-member
ensemble investigated here were otherwise perfect the RMS (MS) for a large sam-
ple of forecasts would converge with increasing lead time to /1.1 (1.1) times
the mean-square analyzed anomaly.

Based on the above discussion, a condition for the optimal smoothing by a
finite size ensemble can be defined in the long time limit. The problem is to



find a condition that can be used at shorter forecast lead times. To derive a
condition of this type it is useful to rescale Eq.3 by the mean-square analyzed
anomaly

NMS =1+ (NFA—2x AC x VNFA)=1- SKILL. (4)

Here, the normalized MS (NMS), the normalized mean-square forecast anomaly
(NFA), and the anomaly correlation (AC) are, respectively,

< (f-a)P>

NMS = _(oF s (5)
< (f-e?>

NFA=2 P (6)

V<(f—e2><(a—0c)? >
We note that this expression for AC, which can also be found in the textbook
of Wilks (1995), is equal to the correlation between the forecast and analyzed
anomalies only if the mean of the forecast and analyzed anomalies (< (f —¢) >
and < (a — ¢) >) are negligible.

M S is smaller for a forecast f than for the climatology based forecast ¢, or
in other words, NMS can be smaller than one, if and only if SKILL > 0. This
inequality is satisfied for a given value of AC' whenever 0 < vV NFA < 2 x AC,
and then the largest possible reduction in NMS is achieved when

NFA = AC 8)

and in that case
SKILL = AC*. (9)

Eq. 9 was first derived by Murphy and Epstein (1989), but in a somewhat dif-
ferent context. They assumed, as is the case for a good single NWP model
forecast, that NF A is equal to one, hence, except for the initial time, SKILL
is smaller than AC?. Therefore, they argued, the square of the anomaly corre-
lation should be considered as a measure of potential rather than actual skill.
Here we make use of the fact that by taking an ensemble mean, NF A grad-
ually decreases with increasing forecast lead time. This means that ensemble
forecasting provides a way of turning the potential skill provided by AC? of the
ensemble mean to actual skill. It must also be emphasized that ensemble aver-
aging can also increase AC, thus increasing the potential skill itself. In other
words, a change in the EFS improves the SKILL if it leads to the retention of
more skillful features with more realistic amplitude and/or to the more efficient
filtering of unpredictable details. The optimality condition we were searching
for is given by Eq. 8.

The above arguments can be extended to give an estimate of the RM S re-
duction that can be attributed to the reduced forecast anomalies in the ensemble



mean compared to the control forecast. Let us assume that AC is equal for the
ensemble and the control forecasts, its value is ac and the value of NF' A for the
control forecast is nfa. The NM S is smaller for the ensemble mean than for the
control forecast if and only if SKILL — (2 X ac X v/nfa—nfa) > 0. This condi-
tion is satisfied if and only if vV N F A is between (i) 2 x ac—+/nfa and (ii) v/n fa,
while the ensemble mean has the largest possible advantage over the control if
Eq. 8 is satisfied. In most cases, including the one when nfa = 1, condition
(i) provides the lower and condition (ii) the upper bound, but when AC is high
and nfa is smaller than one (the numerical model is unrealistically diffusive)
the regular order of the bounds may be reversed. Since the smallest meaningful
value of vV NF A is zero, that should be used as lower bound whenever condi-
tion (i) gives a negative negative number. If the anomaly correlation (ac) is
high (close to 1) there is only a narrow range of reduced forecast error variance
(NFA) that can improve the rms error (NMS) and a strong smoothing can
only degrade the forecast quality (RMS). When the anomaly correlation (ac)
is low, however, the similarly low value of condition (i) provides a wide range of
forecast variance reduction (NFA) that can lower the rms error (NMS).

3.2 Relative RMS error

A Relative RMS
RMS,,

RM Ste2

is introduced here as the percentage of the RMS in the initially high resolution
runs (RMS}p) compared to that in the T62 run (RM Sre2). For small RMS
values RRM S is a more sensitive measure than the difference between the RM S
of the two forecasts (RM Stga — RMS},), thus it can be more efficiently used
to analyze the RM S reduction. Throughout this section the relative RMS is
used in figures to demonstrate changes in the forecast quality due to increased
model resolution. Values smaller (larger) than 100 indicate forecast improve-
ment (degradation) due to increased horizontal resolution.

RRMS = % 100 (10)

3.3 RMS and AC for the control forecasts

NH RRMS (Figure 2): All initially high resolution control runs have lower
RMS error. Furthermore, the use of reduced model resolution after 1 day has a
clear negative effect on the quality of the control forecasts for the day-2/day-4
forecast range. Reducing the resolution after 3 days, however, has an opposite
effect in the day-4/day-7 time range by improving the scores. The benefit from
increased resolution is largest (7.3% error reduction) at day-2 lead time, after
which the gain in forecast quality gradually diminishes.

SH RRMS (not shown): The initial impact of increased resolution on the control
forecast is positive but less significant than for the NH region. For the day-
2/day-4 range the T126 and the D3 runs are superior to the D1 run again, but
beyond day-4 the T126 has the largest rms error.
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Figure 2: Relative RM S for the T126 (solid line), the D3 (long dashes) and the
D1 (short dashes) control forecasts.

NH AC (Figure 8, D1 and D3 are not shown): The evaluation of AC suggests
similar conclusions to those drawn based on RM S statistics. The AC is higher
for the runs that were started at resolution T126 than for the low resolution
control at all forecast lead times. The D3 run produced consistently higher
scores again than the T126 run for the day-4/day-7 forecast range.

SH AC (not shown): The T126 run is superior to the others only up to 4 days.

3.4 RMS and AC for the ensemble means

NH RRMS (Figure 4): The improvement in the skill of the ensemble mean
forecasts due to increased resolution is more substantial than that for the control
forecasts. Interestingly, the error reduction is largest (10.1%) at the shortest
verified lead time (day-1), in contrast to the case of the control forecasts, for
which the largest error reduction was observed at day-2. Another important
difference is that the T126 forecast remains superior to the D3 run for the
day-4/day-7 forecast range, too.

SH RRMS (not shown): The ensemble mean shows a behavior similar to that
of the control forecast: the maximum benefit of increased resolution is at day-2
lead time; the T126 and the D3 runs are superior to the D1 run for the day-
2/day-4 forecast range; and the T62 forecast outperforms the T126 run after 4
days.

NH AC (Figure 3), D1 and D3 are not shown because they are almost indistin-
guishable from those for the T126 forecasts: The initially high resolution runs
performed better than the T62 reference ensemble in terms of AC, too. Note
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Figure 3: Anomaly correlation for the T126 control (short dashes) and mean
(solid line) and the T62 control (dotted line) and mean (long dashes) forecasts.
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Figure 4: Same as Fig. 2 but for the ensemble means.
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Figure 5: Normalized mean-square error (NMS) for the T126 control (short
dashes) and mean (solid line) and the T62 control (dotted line) and mean (long
dashes) forecasts. The thick solid line shows the normalized mean-square error
for the climatology.

that the advantage of the higher resolution runs at day-7 for the ensemble mean
is about 12 forecast hours compared to only about 2 hours for the control. This
means that the increased resolution had a more positive impact on the potential
skill of the ensemble mean than on that of the control forecast.

SH AC (not shown): The initially high resolution mean forecasts have an ad-
vantage in terms of AC for the first four days. At day-5 the AC for the different
runs is identical, while beyond that time the T62 run has the highest AC' values.

3.5 Comparison of the ensemble means and controls

NH NMS and RMS (Figure 5, RMS is not shown): In the T62 forecasts the
RMS is 6.5% larger for the mean forecast than for the control at day-1 and
only after 4 days does it become smaller. In contrast, for the initially high
resolution runs the ensemble mean RM S is larger only at day-1, and only by a
small amount (less than 1.5%), while beyond that time the mean has a gradually
increasing advantage over the control.

The NMS for the T126 (T62) control reaches the error level of the clima-
tological forecast at day-9 (day-8.5) lead time. The advantage of the ensemble
mean over the control at this time is 32.7% (29.9%), what is equivalent to a 18%
(16.3%) RM S reduction. At day-15 lead time the NMS is 0.903 for the ensemble
mean, an indication that the ensemble mean provides a forecast typically better
than that based on climatology even at this extended forecast range. This is
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consistent with earlier results shown in Zhu et al. (1996) and Toth et al. (1998).
SH NMS and RMS (not shown): The RMS (MS) is lower for the means than
for the corresponding control forecasts at all lead times. The error level of the
forecast based on climatology is reached at around day-6 lead time by both
the T62 and the T126 control forecasts. The advantage of the means at this
time is 30.4% (28.1%) for the T126 (T62) ensemble, which is very similar to
that observed for the NH region. The controls and the means converge to their
asymptotes by day-12 indicating that there are no predictable features in the
SH region beyond that time.
NH AC (Figure 3): The AC indicates a lower potential skill for both the T62
and the T126 mean than for the associated controls during the first 3 forecast
days. The increased resolution, however, reduced the difference from 0.002 to
0.001 at day-1, and from 0.005 to 0.002 at day-2 and -3.
SH AC (not shown): The AC scores indicate that the mean forecasts have
higher potential skill than their controls.
Summary. The increased horizontal resolution has more positive effect on the
mean than on the control forecasts in the NH region. This is in part due to the
fact that while the forecast quality of the T62 mean is significantly lower than
that of the T62 control during the first three days, the T126 control only slightly
outperforms the T126 mean during the same period. Truncating the fields after
3 days of model integration has no benefit in the case of the mean forecasts,
which is in contrast to the behavior observed for the control forecasts. This
indicates that the effects of the unpredictable small scale features are efficiently
filtered by the ensemble average and an additional non-selective spectral filtering
of the meteorological fields degrades the forecast quality.

The skills of the ensemble mean and the corresponding control forecasts are
more similar in the SH region and there is no obvious advantage of integrating
the ensembles at increased horizontal resolution beyond 4 days.

3.6 Time evolution of NFA

N F A is first evaluated for the control forecasts (not shown). As can be expected
from a good NWP model, NF A remains near one for all controls during the
entire 15-day forecast range. More precisely, in the NH region there is a slight
(less than 0.5%) initial decay of N F' A during the first day, but beyond that time
the mean-square distance between the forecasts and climatology is practically
perfect. In the SH region the initial decay is somewhat more pronounced (still
less than 2.5%) and N F A shows a slow growing trend for the longer lead times,
which explains why the long term limit of M S is larger than 2.

Figure 6 presents the time evolution of NF A for the T126 and the T62
ensemble mean forecasts in the NH region. The mean-square forecast anomaly
in the NH region is considerably larger for the T62 than for the T126 run at all
forecast lead times. The fact that the T62 model produces higher NF' A than
the T126 model for the ensemble mean is also indicated by the relatively high
NFA for the D1 and D3 runs: after the resolution is reduced there is a well
distinguishable sudden increase in NF A (not shown).
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Figure 6: Normalized mean square distance (NFA) between the T126 ensemble
mean and climatology (solid line). Long dashes show the same but for the T62
mean. The hypothetical optimal value (AC?) is shown by dotted line (short
dashes) for the T126 (T62) ensemble.

The optimal value of NFA, AC? (Eq. 8) , is also shown in Figure 6 for
both ensembles. NFA for the T126 run is optimal at day-1, after which it
gradually drifts away from its optimum. This is not surprising if we recall that
the long term limit of NF'A would be 0.1 in a 10-member ensemble. At day-15
the asymptotic values are not established yet, but the difference between NF A
(0.17) and its possible lowest value (0.1) is small.

The behavior of the T62 ensemble mean is drastically different. The most
striking feature is the curious result that NF A is the largest for the T62 en-
semble mean among all forecasts including the controls. This indicates that
nonlinearity must play an important role in the early evolution of the T62 en-
semble perturbations since linearly evolving perturbations would result in iden-
tical ensemble mean and corresponding control forecasts. This behavior will be
discussed in more detail in section 5.

Apparently, the RM S could be improved by rescaling the forecast anomalies
(f —c¢) such that NF A would become optimal. The RM S reduction that could
be achieved by such a rescaling would be 1.2% (2.8%, and 3.3%) at day-3 (day-7
and day-10)forecast lead time for the T62 ensemble, while the same number for
the T126 ensemble is less than 0.1% (0.7% and 1.1%). The RMS values for
the T126 ensemble mean are nearly as good as they can be for a 10-member
ensemble. This indicates that structures retained in the ensemble mean usually
have realistic magnitude and significant improvements in the mean forecasts can
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be expected only if AC' can be further improved. This also means that for the
high resolution ensemble mean the actual skill is almost equal to the potential
skill given by AC?.

4 Forecast bias and forecast error variance

4.1 Decomposition of the mean-square error

In this part of the study, all variables are decomposed into two parts. A mean
forecast (analyzed) flow, f (a), is defined by time averaging the forecasts (analy-
ses) for each lead time separately, over the 30-day sample period. Eddy quanti-
ties, f' (a’) are then computed by taking the deviation of the forecast (analyzed)
values from the forecast (analyzed) mean. The local mean-square error can also
be decomposed by partitioning the meteorological fields into mean and eddy
components

MS\nG) =(f—aP=(F-ar+(f —ayY=F-a +(J -2 (11)

The square-root of the first term on the rhs. of Eq. 11 (the error in the predicted
mean) is conventionally called bias, while the second term (the error in the pre-
dicted eddy component) is called the forecast error variance. In Figures 7 and 8
the two error components for the T126 control run are shown at day-1 and
day-4 lead times. The localized patterns associated with large bias have negligi-
ble contribution to the total error along the storm track regions. Meanwhile, a
close relationship between storm tracks and the dominant patterns of short-term
forecast error variance is already well established at day-1 and it becomes even
more evident at day-4. This means that decomposing MS into bias and variance
components provides a good way to define a forecast error component that is
dominantly determined by errors in the prediction of high-frequency transients
at short lead times.

The global MS can also be decomposed into bias and error variance terms
by taking the average of Eq. 11 over the grid points

MS=<(f-a)?>=<({f-a) >+<(f—a)?>. (12)

In what follows the relative importance of the increased resolution in reducing
the bias versus the error variance component of M S is investigated by plotting
figures based both on Eqgs. 11 and 12. When reduction in the local bias (forecast
error variance) is concerned the difference between the square of the bias (fore-
cast error variance) terms for the low and the high resolution runs are mapped.
Positive (negative) values on these maps mark locations of reduced (increased)
error terms. In case of the space-time-averaged bias (forecast error variance)
a relative bias (forecast error variance) is defined by the ratio of the square of
the the bias (forecast error variance) terms for the initially high resolution and
the T62 runs. Like in the case of the relative RMS shown in earlier figures, the
ratio is expressed in percentage and the bias (forecast error variance) is reduced
whenever the relative bias (forecast error variance) is smaller than 100.
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Figure 7: Square of the local bias, f — a2, for the T126 control run at day-1
(upper panel, contour interval is 200 gpm?) and at day-4 (lower panel, contour
interval is 1600 gpm?) forecast lead times.
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Figure 8: Forecast error variance, (f — a)'?, for the T126 control run at day-1
(upper panel, contour interval is 400 gpm?) and at day-4 (lower panel, contour
interval is 3200 gpm?) forecast lead time.
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4.2 Time evolution of the forecast bias component

NH forecast bias, control (Figures 9 and 10): The strongly localized patterns
of large forecast bias are over or near to land at day-1. In particular, at the
location where the largest error reduction occurs in the region of the Tian-Shan
mountains (in central Asia), there is an extremely large gradient in surface
height. An independent study (H. M. van den Dool and S. Saha 1999, personal
communication) concluded that this is the typical location of the largest short
term forecast bias in the NCEP global forecast of the 500 hPa height. The
same authors, using the technique of Empirical Orthogonal Teleconnections (van
den Dool et al. 2000), found that the error at that location is also in a close
relationship with the short term coherent large scale Northern Hemisphere error
patterns in the NCEP global model. By day-4 the strongly localized patterns of
improvement disappear and a mixture of modest amplitude improvements and
degradations is left behind.

Since the magnitude of the local bias reductions is large the increased reso-
lution has a dramatic positive influence on the control forecast. The spatially
averaged error reduction (Figure 10) is the largest (35%) at the shortest veri-
fied lead time and the spectral truncation has an immediate negative impact.
Truncating the forecast after day-1 has a clear negative impact, while reducing
the resolution after day-3 is less damaging but still clearly negative.

SH forecast bias, control (not shown): The improvements in the SH region are
smaller than in the NH region. The largest error reduction (16%) is at day-3.
The bias reduction rapidly decreases beyond day-4 and completely diminishes
by day-6.

NH forecast bias, ensemble mean (Figures 11 and 12:) The dominant improve-
ments are concentrated in the same region as for the control forecast at day-1
lead time. Similar, but smaller magnitude improvement patterns (not shown)
can be observed by comparing the T126 and the D1 (D3) runs at day-2 (day-4).
The impact of increased resolution is more dramatic than in the case of the
control forecast: the error reduction is 56% at day-1 and day-2 and the error
reduction is still significant (29%) at day-7.

SH forecast bias, ensemble mean (not shown): The error reduction shows a
similar trend to that observed for the control forecast in the SH region. The
only difference is that the error reduction for the short forecast lead times is
larger for the ensemble mean than for the control.

4.3 Time evolution of the forecast error variance

NH error variance, control (Figures 18 and 14): Large errors in the prediction of
transient eddies along the mid-latitude storm tracks were significantly reduced
by the increased resolution. There are also significant error reductions in regions
where the T126 control forecast produced no significant error variance but where
it was burdened by large forecast bias. The most obvious example for this is
the large-bias area in the Tian-Shan mountains. It means that in the T62
model not only the forecast means but also the forecast transients are in error
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Figure 9: The difference between the square of the local bias for the T62 and
the T126 control forecasts at day-1 (upper panel, contour interval is 100 gpm?)
and at day-4 (lower panel, contour interval is 500 gpm?). Positive values mark
regions where the bias is smaller for the T126 than for the T62 control.
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Figure 10: Relative square of the bias for the T126 (solid line), the D3 (long
dashes) and the D1 (short dashes) control forecasts. The thick solid line shows
the relative square of bias for the T62 control forecast.

in the above regions. While truncating the forecasts after day-1 has negative
forecast effects in the day-2/day-4 forecast range, the D3 run is superior to the
untruncated T126 run at and beyond the day-4 forecast lead time. The largest
error reduction, 15%, is achieved at day-3 by the T126 forecast.

SH error variance, control (not shown): The initially high resolution forecasts
are less efficient in reducing the variance component of the error than in the
NH region. Also, the D1 and D3 runs clearly outperform the T126 run in that
(1) the error for the T126 beyond day-4 is even larger than that for the T62
run; (2) the largest error reduction, 6%, is achieved by the D1 run at day-2 lead
time; and (3) the truncation always has an immediate positive impact on the
error variance component,.

NH error variance, ensemble mean (Figures 15 and 16): The main areas of
error reduction are in the storm track regions and over Europe. The largest
spatially averaged error reduction, 12% achieved by the T126 forecast at day-3,
is somewhat smaller for the ensemble mean than for the control forecast. On
the other hand, for the longer than 5-day forecasts, the error reduction is larger
for the mean than for the control and the T126 mean outperforms the truncated
D3 mean. An other interesting feature is that the forecast error variance was
clearly increased north of 70N by increasing the model resolution.

SH error variance, ensemble means (not shown): The positive effect of increased
model resolution is relatively modest. The largest error reduction, which is only
4.9% at day-3, was realized by the T126 run. The D1 run performs slightly
worse in the day-2/day-4 range, while the D3 run is somewhat better in the
day-4/day-7 range than the T126 run.
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Figure 11: The difference between the square of the local bias for the T62 and
the T126 mean forecasts at day-1 (upper panel, contour interval is 100 gpm?)
and at day-4 (lower panel, contour interval is 500gpm?). Positive values mark
regions where the bias is smaller for the T126 than for the T62 control.

21



80

Relative Square of Bias

40

Figure 12: Relative square of the bias for the T126 (solid line), the D3 (long
dashes) and the D1 (short dashes) mean forecasts.

5 Discussion

Transient eddies. The verification statistics indicate that increased horizontal
resolution enhances the model performance, partly as expected, through better
handling of the transient eddies. A spectral truncation of the forecasts at day-3
lead time can improve the control forecast performance both in RM S and AC
terms, which indicates that the predictability limit is shorter than three days
for a large group of the transient features.! Ensemble averaging, on the other
hand, removes a large part of the unpredictable details from the forecasts. This
ensures that the T126 ensemble mean, in contrast to the T126 control, remains
superior to its truncated counterpart even for the medium and the extended
forecast ranges in the N Hregion. Though most of the improvements in the
prediction of the high frequency transients can be realized by integrating the
forecasts at high resolution only out to day-3 or even only to day-1, a reduction in
the resolution at these times has a clear negative impact on the mean forecasts.

Over the SH region the forecast error variance in both the control and the
mean forecast is reduced by truncating the resolution even as early as at day-1
lead time. The most plausible explanation for this is that the less adequate data
coverage results in a relatively poorer analysis of the smaller scales, leading to
an earlier loss of predictability, and an elevated level of forecast error variance
for these scales. The rather modest reduction of error variance found in the
ensemble mean and the much shorter time limit for skillful prediction in the

I This result was recently confirmed by experiments carried out with the operational global
model of NCEP for January, February, and July 2000; the forecast skill scores were consistently
improved for both three months by truncating the forecasts from T170 to T62 resolution at
day-3.5 lead time (Toth et al. 2002).
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Figure 13: The difference between the forecast error variance for the T62 and
the T126 control forecasts at day-1 (upper panel, contour interval is 50 gpm?)
and at day-4 (lower panel, contour interval is 1000 gpm?). Positive values mark
regions where the forecast error variance is smaller for the T126 than for the
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Figure 14: Relative forecast error variance for the T126 (solid line), the D3
(long dashes) and the D1 (short dashes) control forecasts.

SH region seem to confirm this explanation. We note also that because of the
poorer quality verifying data sets (analyses) the verification results themselves
are less reliable in the SH than in the NH region.

Forecast bias. The less anticipated result is that the significantly larger bias in
the T62 resolution prediction of the 500 hPa height field at short lead times
plays an important role in explaining the difference between the quality of the
different resolution control and mean forecasts. Those components of the pre-
dicted phase space trajectories which are associated with grid-points in the
problematic regions rapidly drift toward the artificial climate of the T62 model.
This drift leads to an inevitable increase of the local and the global MS (RMS)
error statistics. Moreover, because (f — ¢)? is much larger than (@ — c)? in the
large-bias regions, N F'A is also larger in the presence of bias. This is because

NFA:<(f—c)2>:<(]f—c)2>+<f’>
<(a—¢e)?> <@—c?2>+<a >

(13)

and in our case, as in any good analysis-forecast system < f' > and < a’ >
are nearly equal. This latter requirement is satisfied by both the T62 and the
T126 versions of the NCEP MRF except for a slight deficit in < f' > for the
first few days. In the case of the control forecasts this deficit is sufficient to
compensate the short-term impact of the bias on the NF A, but the growing
trend of the bias in the SH region eventually leads to the increase of NF'A,
reported in section 3.6. The high value of NF A for the T62 ensemble mean
in the NH region (which is even larger than one at day-1 lead time) can also
be explained by the presence of bias. For this forecast the difference between
(f —c)? and (@ — c)? is significantly larger than for any other mean or control
forecast verified in this paper.
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Figure 15: The difference between the forecast error variance for the T62 and
the T126 mean forecasts at day-1 (upper panel, contour interval is 100 gpm?)
and at day-4 (lower panel, contour interval is 1000 gpm?). Positive values mark

regions where the forecast error variance is smaller for the T126 than for the
T62 mean.
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Figure 16: Relative forecast error variance for the T126 (solid line), the D3
(long dashes) and the D1 (short dashes) mean forecasts.

It is not clear whether our results point to a specific problem with the T62

version of the NCEP MRF model or they are more general indicating that a
realistic flow cannot be maintained in all geographic areas in a T62 resolution
NWP model. Our results suggest that doubling the horizontal resolution to
T126 can eliminate much of the systematic errors, though slight improvements
from further resolution increases can still be expected.
Model errors and ensembles The overall improved performance of the higher
resolution ensemble can be explained as a combined effect of better predicting
the transient eddies and significantly reducing the forecast bias. Our challenge
is to find an explanation for the anomalously large forecast bias in the T62
ensemble mean.

Since the initial perturbations are generated by the same algorithm in the
T62 and the initially T126 resolution ensembles, the anomalous behavior of the
T62 ensemble mean must be related to the way the perturbations and the model
bias interact. It is obvious that the time evolution of the perturbed trajectories
in the T62 ensemble is highly nonlinear; otherwise the mean and the control
forecasts were identical, which would be reflected in identical forecast scores, as
it is almost the case for the T126 resolution forecasts. This indicates that the
initial ensemble perturbations, which have large local components in the regions
of large forecast bias, can increase the distance between the initial conditions and
the artificial climate of the model, leading to a strong and nonlinear drift of the
ensemble trajectories. It must be emphasized that the T62 perturbations have
overly large amplitude in only a few strongly localized geographical regions and
the global amplitude, as well as the ensemble spread (not shown), is virtually
identical for the T62 and the T126 ensembles during the first few forecast days.
The most dramatic example for the above described process is found in central
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Asia, where the nonlinear drift is due to the adjustment of the flow to the
artificially smooth orography of the model (see section 4.2).

We know that the bred perturbations (rescaled difference between pairs of
short range forecasts) consist of perturbation patterns that amplify fastest in
a cycle of 1-day forecast differences. It has been argued previously (Szunyogh
et al. 1997; Toth and Kalnay 1997) that the bred vectors consist of unstable
structures dominantly associated with baroclinic instabilities of the atmosphere,
as represented by the numerical models. The results of the present study suggest
that in addition to the above structures, another type of rapidly amplifying
structures, related to the drift of the model from the analyzed state to a field
that the imperfect T62 model is able to maintain, are also present in the bred
perturbations. There is a crucial difference, however, between the behavior of
the model drift induced structures and those related to atmospheric instabilities.
The former is the artifact of the use of an imperfect model, while the latter is
the result of properly modeled real world processes. The inclusion of realistic
unstable structures, as ensemble initial conditions, leads to a nonlinear error
reducing process in the ensemble mean. The inclusion of structures that induce
model drift, however, leads to aggravated errors in the ensemble mean.

6 Conclusions

We conclude with the following observations:

e The increased horizontal resolution enhances the performance of the en-
semble mean forecasts. The rms error for the Northern Hemisphere mid-latitude
mean forecast is reduced for the entire 15-day forecast range, while the anomaly
correlation is increased for the first 11 days. In the Southern Hemisphere mid-
latitudes the same error statistics are improved for the first four days of model
integration.

e The balance between anomaly correlation and forecast variance is more
optimal in the T126 than in the T62 ensemble mean. In other words, using a
higher resolution model the actual skill is closer to the potential skill defined by
AC?.

e The two main meteorological aspects of the resolution induced error re-
ductions are the maintenance of a more realistic time-mean flow and the better
prediction of high frequency transients along the mid-latitude storm tracks.

e The effect of increased horizontal resolution is more positive on the en-
semble mean than on the control forecast. The maximum rms error reduction
for the ensemble mean (control) is 10.1% (7.3%) in the Northern Hemisphere
mid-latitudes. This improvement is found at day-1 (day-2) forecast lead time,
but at day-7 the error reduction is still 5.2% (1.9%). At day-7 the advantage of
the high resolution ensemble mean (control) in terms of anomaly correlation is
12 (2) hours. In the Southern Hemisphere the rms error reduction for the mean
(control) is 3.6% (3.5%) at day-2.

e It is evident that the adequate model resolution is most crucial during
the first few days of model integration. While the ensemble clearly benefits

27



from maintaining high resolution beyond the first three days both in terms of
reduced bias and error variance, the error variance in the control forecast is
actually reduced when the resolution is truncated at day-3.

While some of the quantitative results presented in this study may strongly
depend on the sample period chosen, the indications are clear that using ade-
quate model resolution in ensemble forecasting is important. The results shown
here, along with probabilistic verification scores presented in Toth et al. (2002),
demonstrate that the use of a higher resolution NCEP MRF leads to improved
ensemble forecasting. Partly based on the results presented here, a new opera-
tional ensemble configuration was implemented at 1200 UTC 27 June 2000 (1200
UTC 20 December 2000) at NCEP. Since this implementation ten perturbed
forecasts are made both at 0000 and 1200 UTC and all perturbed forecasts are
integrated at a horizontal resolution T126 up to 60-hour (84-hour), after which,
in order to save computer time, they are truncated to T62 resolution.
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