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ABSTRACT 

Reliability and resolution are the two main attributes of forecast systems. These 
attributes statistically relate the performance of a forecast system to verifying 
data in an abstract sense. Forecast attributes have been separately defined in 
the literature for systems that generate forecasts of particular formats or types. In 
this paper, statistical reliability and resolution are defined in a general sense, 
irrespective of the type or format of a forecast. Statistical reliability is concerned 
only with the form of forecasts, whereas statistical resolution is concerned only 
with the predictive capability of a forecast system, related to the time evolution of 
the system that is being forecast. 

The two main attributes are independent characteristics of a forecast system and 
can be quantitatively assessed by a host of different verification measures. The 
general definition of forecast attributes allows a systematic discussion of the 
relationship between the verification and calibration of forecasts. Calibration as 
defined here is an adjustment of the form of the forecasts, to match the 
distribution of verifying observations that follow the issuance of forecasts of a 
particular form.  

Resolution, as the inherent predictive value of forecast systems, is the attribute 
most sought after by developers of forecast systems. Reliability, however, is 
equally important in real world applications.  That calls for the generation of a 
long enough record of hind-casts to allow for a good calibration of forecasts, or, 
preferably, for improvements in forecast systems that directly lead to better 
reliability.  
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1. Introduction  

There exists a vast array of statistics for the description of various aspects of 
forecast systems, such as those discussed for weather and climate in this 
volume by Allen et al. (2005), Anderson (2005), Buizza (2005), Hagedorn et al. 
(2005), Kalnay et al. (2005), Krishnamurti et al. (2005), Lalaurette and der Grijn 
(2005), Mylne (2005), Tibaldi et al. (2005), Waliser 2005), and Webster et al. 
(2005). Some of these statistics are based solely on the forecast system 
investigated, while others, called verification statistics, depend both on the 
forecast values and the corresponding observations from the system that is being 
forecast (the atmosphere in the case of weather forecasts). The specifics of 
these statistics or forecast verification measures are not the subject of the 
present study. Interested readers can find a review of many of these statistics, 
with additional references, for example, in a recent handbook edited by Joliffe 
and Stephenson (2003).  

Instead, this study focuses on the underlying statistical verification attributes of 
forecast systems. The main statistical forecast verification attributes, statistical 
reliability and statistical resolution (from here on, reliability and resolution), have 
long been discussed in the literature (see, e. g., Murphy and Daan 1985, and 
references therein). Yet these attributes have been discussed only with respect 
to particular forecast formats (single value, categorical, or one or another of the 
probabilistic forecast format types, see, e.g., Stansky et al., 1989; Wilks 1995; 
Joliffe and Stephenson 2003) and not for weather forecasts of any type in 
general. 

Sections 2 and 3 of this paper will introduce a general definition and discuss 
some characteristics of statistical forecast verification attributes (in short, forecast 
attributes), respectively. Section 4 will explore the statistical limits of measuring 
forecast attributes. Based on the general definition of the forecast attributes, and 
on an analysis of the statistical limitations in assessing them, an examination of 
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the relationship between forecast verification and the calibration of weather 
forecasts (that is, the enhancement of certain statistical properties of the 
forecasts) follows in Section 5.  Section 6 will explore the significance of the two 
main forecast attributes to developers and users of forecast systems, while 
Section 7 offers a summary of the main findings of this study. 

 

2. Definition of forecast attributes 

Forecast attributes, as their name suggests, are abstract concepts that the 
various verification statistics, using different metrics, quantify. Taking an example 
from physics, length is an attribute that can be measured by a number of different 
metrics. As mentioned in the Introduction, forecast attributes have been 
discussed so far in the context of specific types of forecasts (see, e.g., Murphy 
and Daan 1885; Stansky et al., 1989; Wilks 1995; Toth et al., 2003). Forecast 
attributes are defined below in a general sense, allowing for a comprehensive 
discussion of weather forecasts and their statistical calibration.  

The verification attributes discussed below are defined in a statistical sense, 
which is related to forecast systems, and not to individual forecasts generated by 
them. Forecasts can be of any format but are assumed to belong to a finite 
number of different “classes”, called Fi. The set of verifying observations 
corresponding to a large number of forecasts of the same class are characterized 
by an empirical frequency distribution, called observed frequency distribution 
(ofd), and marked by oi. 

2.1 Reliability 

When defining the first forecast attribute, statistical reliability, consider a 
particular forecast class, Fi. Consider further the frequency distribution of 
observed outcomes that follow forecasts from class Fi, that is oi. If forecast Fi has 
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the exact form of oi for all forecast classes (i), the forecasts are statistically 
consistent with the observations and the forecast system is called (perfectly) 
reliable. Different measures of reliability are based on various methods for 
comparing forecast Fi and the corresponding observed frequency distribution oi 
for all forecast classes (i), and measuring their difference. 

 

2.2 Resolution 

The second forecast attribute, statistical resolution, is defined as a forecast 
system’s ability to distinguish, ahead of time, between different outcomes of the 
natural system (in case of weather forecasts, the future state of the real 
atmosphere).  

For a more formal definition of resolution, let us assume that the observed events 
are classified into a finite number of classes, marked by Oi. If each observed 
class Oi is preceded by a distinctly different forecast class Fi, the forecast system 
is said to have perfect resolution. Conversely, if the forecast is the same prior to 
each observed class Oi (i.e., the forecasts do not vary, Fi=F for all i), or if the 
forecasts vary but the observed frequency distribution oi following the issuance of 
different forecasts Fi is the same (i.e., oi=c, the climatological distribution, for all 
i), the forecast system has no resolution at all. 

Resolution in a forecast system can be measured by the degree of separation 
among the frequency distributions of observed events (oi), conditioned on 
different forecast classes (Fi). In practice, this can be achieved by comparing the 
observed frequency distributions (oi), constructed from observed events that 
follow different forecast classes, to the overall climatological distribution of 
observations (c, that is the reference for a forecast system with no resolution). 
Different measures of resolution are based on various methods for carrying out 
this comparison.  
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3. Some characteristics of forecast attributes 

i) Reliability and resolution are two independent attributes. Reliability is 
concerned only with the statistical consistency between each class of 
forecasts Fi and the corresponding distribution of observations oi that 
follow such forecasts, whereas resolution is not affected at all by this 
consistency. On the other hand, resolution reflects how well different 
forecast classes can separate cases with different subsequent 
observed events, whereas reliability is unaffected by this property of 
forecast systems.  

While the format and the actual values used by a forecast system are 
irrelevant to its resolution, they are critical for its reliability. On the other hand, 
a forecast system with perfect reliability does not necessarily have good 
resolution. Two examples are interesting to note here. A forecast system 
always issuing the observed climatological distribution has perfect reliability 
and no resolution by definition, while a system using forecast anomalies that 
are systematically reversed compared to observed anomalies would have 
perfect resolution but no reliability. 

ii) In principle, reliability can always be statistically “enforced” or 
corrected. This is true as long as both the forecast and observed 
systems are stationary in time, and there is a long enough record of 
forecast-observed data pairs. This is because reliability reflects only 
the statistical consistency between forecast and observed distributions. 
All one has to do to achieve the desired consistency is to replace the 
forecasts in a given forecast class with the frequency distribution of 
observations that follow such forecasts. 

iii) Unlike reliability, resolution cannot be improved by statistically 
correcting the forecasts so they follow the distribution of ensuing 
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verifying observations. This is because resolution does not depend on 
statistical consistency. Resolution reflects the inherent value of 
forecast systems, and can be improved only through the modification 
of the forecast scheme based on additional knowledge about the 
temporal evolution of the observed system. 

iv) Reliability and resolution, as defined above, are general attributes of 
forecast systems. They can be interpreted for systems generating 
forecasts of any type, such as single value, categorical, or probabilistic. 

It is interesting to note that single value (out of a continuum) forecasts can be 
perfectly reliable only if they have perfect resolution as well. This is the only way 
the observed frequency distribution would exactly match the Dirac function form 
of the forecasts.  

As mentioned earlier, forecast attributes have been interpreted in the past for 
forecasts issued in specific formats (i.e., not necessarily in the general form of a 
probability distribution). While this can be useful for special purposes, it must be 
noted that such narrow definitions of forecast attributes are not fully consistent 
with the general definition introduced in this study.  

Consider, for example, the case of a forecast system with less than perfect 
resolution that issues single value forecasts. In this case, it could be possible to 
define statistical reliability (or statistical consistency, as it is also often referred to, 
see e.g. Wilks 1995) as a lack of conditional systematic bias. According to this 
narrow definition, a forecast system is considered reliable if for all forecast values 
the frequency distribution of corresponding observations has the same mean as 
the forecast value. It is easy to see that this feature is a necessary but not 
sufficient condition for reliability as defined in the present study. In fact, the no-
spread single value forecasts, even if they have no systematic bias, will have 
less than perfect reliability for any system with less than perfect resolution. 
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Such a narrow definition of reliability will have an implication for statistical 
calibration as well, as it will be discussed in Section 5. 

 

4. The limits of assessing reliability and resolution 

4.1 Measures of forecast attributes 

As discussed by Toth et al. (2003) for forecasts in probabilistic format, some 
existing verification measures assess reliability, some resolution, while still others 
provide a combined measure of both. Note that some measures can be 
calculated for selected subsets of all forecast cases – like the reliability and 
resolution components of the Brier score verifying for only one of a set of 
categorical events. These measures can be related to reliability and resolution as 
defined in the present study only if the measure is aggregated over all observed 
categories. 

4.2 Factors limiting the statistical accuracy of verification statistics 

While forecast attributes can theoretically be defined assuming that the number 
of forecast cases goes to infinity, in practice verification measures are always 
computed based on finite samples. Therefore, verification results can be 
considered estimates whose accuracy will depend on the sample size. 
Knowledge about the uncertainty in verification results is important (see, e. g., 
Hamill 1997), especially when one compares two or more competing forecast 
systems. In such cases it is especially important to assess the statistical 
significance of the comparative verification results (see, e.g., Candille and 
Talagrand 2005). The associated uncertainty in the verification results can be 
reduced only through increasing the sample size, which is often impossible when 
evaluating real life forecast systems. 
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Another factor limiting the accuracy of verification estimates is the uncertainty in 
the verifying data (Candille 2003). Observations used to verify forecasts are 
generally associated with measurement and other errors. For properly assessing 
reliability and resolution of a forecast system, such errors in the observations 
need to be carefully accounted for, otherwise, the results will either be biased 
and/or will look statistically more certain than they are. Observational errors can 
be considered in forecast verification by replacing an observed value (Delta 
function) with a probability density function (pdf) that reflects the observational 
uncertainty. The use of incorrect observational error estimates (such as 
assuming perfect observations in the presence of errors, as in the case of most 
verification studies) will introduce errors in the verification (and pursuant 
calibration) results.  

A third factor influencing the accuracy of forecast verification statistics is the 
choice of the level of granularity introduced in the calculations, which is a function 
of the level of detail sought in the results. The granularity of verification studies 
can be controlled through a number of choices. 

First, forecasts can theoretically take an infinite number of forms. Yet, when in 
practice a finite sample of forecasts are evaluated statistically, forecasts of a 
similar form must be grouped into a finite number of classes. For more detailed 
verification statistics one might possibly wish to establish a large number of 
forecast classes. The number of different classes is limited, however, by the 
requirement that there be enough forecast cases in each of the classes 
established. 

Second, forecast probability distributions can theoretically be defined and 
manipulated as continuous functions. In practice, however, calculations are 
always carried out over finite intervals. And because the sample size is limited, 
the width of the intervals cannot be reduced arbitrarily, otherwise, most intervals 
would contain no data points. 



 10

Finally, if the overall sample size is small, one may need to group together 
forecast-observed pairs from similar geographical regions and/or similar parts of 
the annual cycle. 

In practice, when choosing the level of granularity in verification calculations, one 
seeks a compromise between having a large enough sample for all forecast 
classes and verification intervals, while retaining as many classes, intervals, and 
geographical, seasonal distinctions as possible, given the total number of 
forecast-observation pairs (Atger 2003). Obviously, the larger the overall sample 
of forecast-observation pairs is for verification, the more questions about the 
performance of the forecast system can be answered. As we will see in the next 
section, the same holds true for the number of adjustment types that can be 
made as part of a statistical calibration algorithm.  

 

5. Calibration 

The goal of calibration is to make the form for each class of forecasts statistically 
more consistent with the distribution of the corresponding verifying observations. 
Calibration, as defined here, is the replacement of the forecast, whatever form it 
may have (i.e., single value, categorical, or probabilistic), with an estimate of the 
corresponding odf (which describes the distribution of observations that in the 
past followed the issuance of forecasts from the same forecast class). The 
success of calibration can be measured by comparing the reliability of the 
calibrated forecasts with that of the raw, un-calibrated forecasts.  

Note that calibration is directly related to the verification of statistical reliability, 
since both are based on estimating the distribution of observations following 
different forecast classes. While verification assesses the statistical reliability of a 
forecast system over a period in the past, calibration adjusts the forecasts with 
the intention to make them more consistent with observed statistics in the future. 
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Calibration is based on the assumption that the statistical behavior of the forecast 
and observed systems, as analyzed over a period in the past will not change in  
the future. Calibration, therefore, is subject to an additional limitation beyond 
those discussed with respect to verification. Namely, that the quality of calibration 
will suffer if either the natural or the forecast system is non-stationary in time. As 
with verification, small sample size, the presence of uncertainty, and errors in 
describing uncertainty in the verifying observations will also adversely affect 
calibration results, as will an inappropriate choice for the level of granularity in the 
calculations.  

There are a number of ways that forecasts from different classes, geographical 
regions or different parts of the annual cycle can be grouped together for 
computing verification statistics that are also needed for calibration. The resulting 
formation of larger sub-samples allows a more robust statistical estimate of the 
underlying distribution of the observations corresponding to a broader group of 
forecasts – at the expense of reducing the level of details in the verification, and 
consequently in the pursuant calibration results.  Therefore, careful compromises 
are needed when the level of granularity is chosen for the computation of 
statistics for calibration. Allow too many details in the verification (i.e., use too 
many different forecast classes), and the calibration will suffer from sampling 
noise. Conversely, the lack of enough detail in verification (i.e., grouping 
forecasts from areas with distinctly different verification statistics together, see 
Atger 2003) can also adversely affect the calibration by leaving the biases 
present in the smaller sub-samples uncorrected. 

 It should be noted that calibration, as discussed earlier with respect to 
verification, can be introduced in a narrower sense than that defined above. 
Forecasts, for example, can be corrected only to reduce their systematic bias in 
the first moment. An application based on such a narrow definition of calibration 
will necessarily be limited since other, higher moment aspects of the forecasts 
will not be statistically corrected. On the other hand, calibration, if applied in a 
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general sense as defined above on single value, categorical, or any other type of 
forecasts, will naturally change the format of the forecasts to the more general 
probabilistic format. 

 

6. Significance of attributes to forecast developers and users 

Neither the reliability nor the resolution of real life weather forecast systems is 
perfect. What is the significance of either attribute to the developers or users of 
weather forecasts? Is one or the other attribute more important? 

6.1 Developers’ perspective 

We recall that the inherent value of forecast systems lies in their ability to predict 
future events, as reflected in the statistical resolution of forecast systems. This is 
equivalent to a forecast system issuing uniquely different signals prior to different 
observed events. For example, if a system systematically gives a prediction of 
“heavy snow” (or “red”) and “light snow” (or “blue”) prior to observed rain and no 
rain events respectively, it has a high resolution.  

Since the forecast signals issued by this forecast system are significantly 
different from the subsequent observed verification events, however, the 
forecasts have poor reliability. If such behavior is systematic, the forecasts can 
be calibrated and the developers of the forecast system may be content with the 
good resolution and may not be overly concerned with the apparent lack of 
reliability.  

6.2 Users’ perspective 

It must be noted that when forecasts from the system described above are taken 
by the users at their “face value”, they can be worthless or even harmful. A user 
who believes what the forecast says and acts on that information can be 
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seriously hurt (e.g., Zhu et al., 2002). Even forecast systems with high predictive 
skill (high resolution) have no value to users unless they also have good 
reliability. This explains why users often emphasize reliability in their evaluation 
of forecast systems, based on the principle of “do no harm”. 

6.3 Need for calibration 

Generally, a long enough record of observed-forecast pairs will allow an 
adjustment or calibration of the forecast signal to match the distribution of 
observations that follow a particular forecast class. Incidentally, a similarly long 
record of observed-forecast pairs may be needed for the precise assessment of 
resolution in a forecast system (see Section 4). In the case of a forecast system 
with high resolution, calibration can significantly enhance the utility of forecast 
systems. This underlies the need for the provision of a large enough set of hind-
casts (forecasts generated on past events). This will allow a proper assessment 
of both the resolution and reliability of the forecast system, and will facilitate a 
subsequent calibration of the forecasts in case the forecast system lacks 
statistical reliability. In such a case, statistical reliability can be achieved through  
a statistical adjustment  via calibration. 

6.4 Value of forecasts 

As discussed above, beyond resolution, the users also critically depend on the 
reliability of the forecasts. It is therefore important that when (typically after they 
are calibrated) the value of forecast systems is assessed for the users, both 
resolution and reliability are considered1. One can argue that for a forecast 
system to show genuine improvement, its resolution must be measurably 

                                                 
1 As discussed in Zhu et al., (2003), some measures of forecast performance, such as the 
potential economic value, assume that the forecasts can be perfectly calibrated (i. e., forecasts 
are automatically calibrated as part of the computation of potential economic value, using the 
dependent and not an independent set of data for calibration). These results will overestimate the 
actual utility of forecasts that in practice will necessarily be lowered by the limits of calibration 
discussed in Section 5. 
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enhanced. An experimental forecast system with enhanced resolution, but an 
insufficient hind-cast data set for calibration, however, may degrade utility. One 
may argue that enhanced resolution forecast systems be operationally 
implemented only if their reliability is not affected negatively, or if at least a 
sufficient hind-cast dataset is generated to ameliorate the problem through 
calibration.  

6.5 Future directions 

As forecast systems mature, there is a natural tendency to use more detail from 
the forecasts. For that to happen, one needs to include more detail in the 
calibration of the forecasts as well. That, as discussed earlier, calls in turn for 
longer periods of past observed-forecast pairs. Unfortunately, the number of such 
pairs is usually severely limited due to the lack of long periods of detailed 
observations. This is of particular concern when extreme events are considered. 
Such events, by definition, occur rarely (Zhu and Toth 2001). Therefore, their 
statistical calibration is especially problematic (Legg and Mylne 2005). Yet these 
rare events are often of the greatest interest to users.  

It follows that as forecast and application methods improve and more details are 
demanded from a system, the potential value added by statistical calibration will 
likely diminish. Since under such conditions statistical corrections are of little or 
no help, directly improving the reliability of a forecast system itself will become 
more important and sometimes will offer the only tractable solution.  When the 
realism of models representing weather systems (that is directly related to 
reliability) is improved, the changes may also lead to improvements in predictive 
skill (i.e., resolution). Prediction of tropical storms is a prime example of a 
situation where the role of statistical calibration is limited due to the highly 
nonlinear nature of these systems. If a storm, due to model deficiencies (e. g., 
too low spatial resolution), is not predicted (well) by a forecast system, the 
insertion (modification) of a storm into the forecast via statistical 
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inference/calibration may require an impractically large training data set. In such 
cases the reliability (and utility) of the forecasts can be improved only by 
enhancing the realism of the numerical weather prediction model itself. 

 

7. Conclusions  

This study introduced a distinction between the abstract notion of forecast 
system attributes and the statistical measures used to assess them. Unlike 
earlier studies, a general definition of the forecast attributes was proposed, 
irrespective of the format of the forecasts. Both of the two main attributes, 
reliability and resolution, were interpreted in a statistical sense. Reliability was 
defined as a perfect match between the form of a forecast and the distribution of 
verifying observations that follow the issuance of that particular forecast form. A 
forecast system is said to have perfect resolution, on the other hand, if it 
consistently gives different signals prior to the occurrence of different 
observations. 

Reliability and resolution were shown to be independent of each other. Of the two 
attributes, forecast system developers are more concerned about resolution 
since that is related to the intrinsic predictive capability of forecast systems. For 
the users who take the weather forecasts at face value, reliability is equally or 
even more important. This is because it is reliability that assesses how what is 
being forecast (i.e., the form of the forecasts), and directly acted upon by the 
users compares statistically to what is being observed.  

A number of verification measures exist for the assessment of reliability and 
resolution. These measures, like any other statistics based on finite samples, are 
subject to sampling and other types of errors. These same errors were also 
shown to affect calibration, where the reliability of forecast systems is enhanced. 
Calibration was defined in general terms as the replacement of the form of the 
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forecasts by the distribution of observations that follow the issuance of any 
particular forecast form, based on a set of observed-forecast data pairs.  

It follows from the general definition of the main forecast attributes and calibration 
that the general format of forecasts is that of a probability density function (pdf) 
since that is the only format that can, in general, be consistent with the 
distribution of ensuing observations. A pdf format allows the forecast system to 
reflect case-by-case variations not only in the expected first moment of future 
weather parameters but also in the higher moments, such as error variance. For 
example, forecasts in pdf format can distinguish, given a certain expected value, 
between cases with higher and lower uncertainty (Toth et al. 2001). Such 
information is known to have potentially great economic value for the users (Zhu 
et al., 2003), yet cannot be provided by a forecast system using a single value 
format. To what extent ensemble forecast systems can provide useful information 
beyond the first moment of the distribution is still an open question (see, e. g., 
Atger 1999). 
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