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ABSTRACT
The initial perturbations used for the operational global ensemble prediction system of the National Centers for Envi-
ronmental Prediction are generated through the breeding method with a regional rescaling mechanism. Limitations of
the system include the use of a climatologically fixed estimate of the analysis error variance and the lack of an orthog-
onalization in the breeding procedure. The Ensemble Transform Kalman Filter (ETKF) method is a natural extension
of the concept of breeding and, as shown by Wang and Bishop, can be used to generate ensemble perturbations that can
potentially ameliorate these shortcomings. In the present paper, a spherical simplex 10-member ETKF ensemble, using
the actual distribution and error characteristics of real-time observations and an innovation-based inflation, is tested and
compared with a 5-pair breeding ensemble in an operational environment.

The experimental results indicate only minor differences between the performances of the operational breeding and
the experimental ETKF ensemble and only minor differences to Wang and Bishop’s earlier comparison studies. As
for the ETKF method, the initial perturbation variance is found to respond to temporal changes in the observational
network in the North Pacific. In other regions, however, 10 ETKF perturbations do not appear to be enough to distinguish
spatial variations in observational network density. As expected, the whitening effect of the ETKF together with the use
of the simplex algorithm that centres a set of quasi-orthogonal perturbations around the best analysis field leads to a
significantly higher number of degrees of freedom as compared to the use of paired initial perturbations in operations.
As a new result, the perturbations generated through the simplex method are also shown to exhibit a very high degree of
consistency between initial analysis and short-range forecast perturbations, a feature that can be important in practical
applications. Potential additional benefits of the ETKF and Ensemble Transform methods when using more ensemble
members and a more appropriate inflation scheme will be explored in follow-up studies.

1. Introduction

It is well known that the atmosphere is chaotic, and its pre-
dictability is severely limited by both initial and model-related
errors. A feasible way to improve a single, deterministic forecast
is to use ensemble forecasting. Ensemble forecasts start from a
set of different states that are approximated using a finite sample
of initial perturbations. However, the nature of the best method to
generate these initial perturbations for an ensemble forecasting
system is still under investigation.

At the European Center for Medium-Range Weather Fore-
casts (ECMWF), singular vectors (SVs) are used to identify the
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directions of fastest forecast error growth for a finite time pe-
riod (Buizza and Palmer, 1995; Molteni et al., 1996). Instead of
using SVs, the National Centers for Environmental Prediction
(NCEP) uses bred vectors (BVs) to sample amplifying analysis
errors through breeding cycles that are similar to data assimila-
tion cycles (Toth and Kalnay, 1993; 1997). However, both SVs
and BVs cannot accurately represent the true uncertainties in
analysis as we expect from a good ensemble forecast system.
A comparison of the performances of the ECMWF and NCEP
ensemble forecast systems was described by Zhu et al. in 1996
(personal communication), and a more recent comparison can
be found in Wei and Toth (2003).

Another method is the perturbed observation (PO) approach
developed at the Meteorological Service of Canada (MSC)
(Houtekamer et al., 1996; Houtekamer and Mitchell, 1998). The
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PO approach generates initial conditions by assimilating ran-
domly POs using different models in a number of independent
cycles. The initial perturbations generated by the PO method
are more representative of analysis uncertainties in comparison
with SVs and BVs. A comprehensive summary of the current
methodologies and performance of the three ensemble forecast
systems from ECMWF, MSC and NCEP can be found in Buizza
et al. (2005).

In this paper, we explore a method proposed by Wang and
Bishop (2003) (referred to as WB) to generate the initial per-
turbations for global ensemble forecasts. The method is based
on an Ensemble Transform Kalman Filter (ETKF) put forward
by Bishop et al. (2001). The ETKF was initially applied to the
adaptive sampling problem; for example, Majumdar et al. (2001;
2002). Later Wang and Bishop (2003) showed how it could
be used to generate ensemble perturbations without having to
perform data assimilation, while Etherton and Bishop (2004)
showed how ETKF ensemble perturbations enabled a highly ef-
ficient hybrid data assimilation scheme. Although the ETKF for-
mulation is derived from ensemble Kalman filter theory which
is used for data assimilation, as in Wang and Bishop (2003), in
this study, the ETKF is only used for ensemble generation alone.
In this context, the ETKF transforms forecast perturbations into
analysis perturbations in a manner consistent with the Kalman fil-
ter error covariance update equation. The ETKF transformation
procedure requires as input the locations and error covariances of
observations. It is similar to breeding cycles in that both schemes
create analysis perturbations from forecast perturbations. The
observational values are used only in computing inflation fac-
tors for adjusting the magnitudes of analysis perturbations. En-
semble Transform Kalman Filter analysis perturbations are then
added to the analysis field produced by the NCEP operational
data assimilation system (Parrish and Derber, 1992) instead of
the analysis that could be produced by ETKF-based data assimi-
lation. The reason for using the NCEP operational analysis field
rather than an analysis based on some sort of ensemble Kalman
filter is because the ETKF and other related ensemble-based
data assimilation schemes (described below) have not yet been
proven superior to the existing NCEP system. The question of
whether such ensemble-based data assimilation schemes, includ-
ing ETKF, can generate a good analysis with real observations
is being pursued by a few major organizations (see discussion
section).

WB compared the performance of the ETKF and breeding-
based ensemble forecast systems. They showed that the ETKF
ensemble produces better results than the breeding method in
their experimental setup. However, their experiments were con-
ducted in a simplified environment with an idealized observa-
tion system. It would be very interesting to understand how an
ETKF-based ensemble forecast system works in an operational
environment with real observations. Here are some major dif-
ferences between WB and our experiments. First, the two mod-
els are different; our NCEP GFS model has a higher resolution

(T126L28) than the WB NCAR CCM3 model (T42L18), and
we use fewer ensemble members (10) than WB (16). Second,
whereas WB approximated the full observational network with
a fixed number of rawinsonde-like stations, this study uses the
full observational network with a highly changeable number of
rawinsonde, aircraft satellite wind and other measurements that
comprise the conventional observational network for NCEP’s
operational data assimilation. Thus, the observational operator
in WB is simplified. In fact, an accurate computation of the obser-
vational operator is one of the major challenges in an operational
data assimilation system. Third, our observations can be at any
level and irregularly distributed, while WB’s were assumed to
be at only three prespecified levels. Fourth, our observational
values are real for calculating inflation factors, while WB used
re-analysis data as the observations. Fifth, our observation errors
vary spatially and temporally, while WB computed the RMS with
re-analysis data as the observational errors. As a matter of fact,
WB used only two fixed values for temperature and wind obser-
vation error variances, respectively. Sixth, in WB’s comparison,
the magnitude of globally averaged breeding and ETKF initial
ensemble variance is similar at all initialization times, whereas
in the current comparison, average initial ensemble variance is
larger for the ETKF than breeding. Furthermore, an interaction
between the method used to compute the inflation factor and the
varying number of observations from cycle to cycle may cause
the initial ETKF ensemble variance to oscillate from one initial-
ization time to the next.

Since under the limits of a very small ensemble (two mem-
bers), the ETKF becomes equivalent to the breeding technique
without paired perturbations and masking, the question of en-
semble size is critical in any comparison between breeding
and ETKF ensemble generation techniques. Wang and Bishop’s
(2003) experiments showed that an 8-member ETKF ensemble
was not large enough to reliably resolve even large-scale geo-
graphical fluctuations in observational density. If limited compu-
tational resources limited one’s ensemble size to eight members,
then one would have had to apply some sort of masking (Toth and
Kalnay, 1997) technique to Wang and Bishop’s ETKF perturba-
tions to reasonably represent the effect of observational density
fluctuations on forecast error variance. Wang and Bishop (2003)
did not apply masking to their perturbations because they found
that increasing the ensemble size to 16 members was sufficient
to crudely resolve the major fluctuations in observational density
present in their simulated observational network. One of the ob-
jectives of this paper is to investigate whether a relatively small
10-member ETKF ensemble with no masking can outperform
a similarly small breeding ensemble with masking. The choice
of 10 members is motivated by the simple fact that, currently,
NCEP is running a 10-member operational breeding ensemble.

The results from our experiments offer the first test of how a
small ETKF ensemble works in an environment that is close to
operations with real observations. The comparative evaluations
of the ETKF and breeding methods will include the impact of
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observations in different spaces, such as local, observational,
2-D and 3-D grid point spaces. The perturbation growth and
effective number of degrees of freedom (EDF) of the subspaces
spanned by the ETKF and breeding perturbations are compared.

Although the ETKF is not used for data assimilation in this
study, the method of generating analysis perturbations (not anal-
ysis fields) from forecast perturbations is based on data assimi-
lation principles. In fact, ETKF is one variant of ensemble-based
Kalman square root filters (Tippett et al., 2003). Other closely re-
lated variants of ensemble-based Kalman filters are the Ensemble
Adjustment Kalman Filter (EAKF) and Ensemble Square Root
Filter (EnSRF) proposed by Anderson (2001) and Whitaker and
Hamill (2002), respectively. A local Ensemble Kalman Filter
(LEKF) was proposed by Ott et al. (2004) (also, see Szunyogh
et al., 2005). All these methods (ETKF, EAKF, EnSR and LEKF)
are deterministic solutions of ensemble Kalman filters, while the
PO method is a stochastic solution (Houtekamer and Mitchell,
1998; Burgers et al., 1998). Lorenc (2003) has reviewed and com-
pared different ensemble Kalman filters (such as ETKF, EAKF,
EnSR and PO method) and 4-D Var for data assimilation.

The paper is organized as follows. Section 2 provides a
brief basic description of the ETKF formulation. Also in this
section, the experimental setup is described together with the
real-time observation data. Section 3 presents the major results
of our comparison. Discussion and conclusions are given in
Section 4.

2. Methodology

2.1. Basic formulation

The initial perturbations of the NCEP global ensemble fore-
cast system are generated by a breeding method. This method
is well established, widely used and well documented. A de-
scription of the operational implementation at NCEP can be
found in Toth and Kalnay (1993; 1997). More results and docu-
ments are available on the NECP ensemble forecast web site at
http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html.

The ETKF formulation (Bishop et al., 2001) is based on the
application of a Kalman filter, with the forecast and analysis co-
variance matrices being represented by k-forecast and k-analysis
perturbations. Let

Z f = 1√
k − 1

[
z f

1 , z f
2 , . . . , z f

k

]
,

Za = 1√
k − 1

[
za

1, za
2, . . . , za

k

]
, (1)

where the n-dimensional state vectors z f
i = x f

i − x f and za
i =

xa
i − xa (i = 1, 2, . . . , k) are k-ensemble forecast and analysis

perturbations, respectively. n is the number of dimensions of the
state vector in model space. In our experiments, x f is the mean
of k-ensemble forecasts and xa is the analysis from the indepen-
dent NCEP operational data assimilation system. Unless stated

otherwise, the lower and upper case bold letters will indicate vec-
tors and matrices, respectively. The n × n forecast and analysis
covariance matrices are formed, respectively, as

P f = Z f Z f T
and Pa = ZaZaT

, (2)

where T indicates the matrix transpose. For a given set of fore-
cast perturbations Z f , the analysis perturbations Za can be de-
termined by solving the Kalman filter error covariance update
equation

Pa = P f − P f HT (HP f HT + R)−1HP f , (3)

where R is the p × p observational error covariance matrix for
p observational values used in the NCEP operational data as-
similation system and H is the linearized observational operator
mapping the forecast grid point values onto the observational
points. The ETKF transformation from forecast to analysis per-
turbations can be expressed as Za = Z f T. Inserting P f = Z f Z f T

and Pa = Z f TTT Z f T
in (3), one obtains an equation for T.

Bishop et al. (2001) showed that a solution to this equation is
T = C(Γ + I)−1/2, where C contains the column orthonormal
right SVs (ci ) and Γ is a diagonal matrix containing squared
singular values (λi ) of

A f = R−1/2HZ f = UΓ1/2CT , (4)

that is, C = [c1 , c2 , . . . , ck] and Γ = diag(λ1, λ2, . . . , λk).
Although the forecast perturbations are by definition centred

about the ensemble mean, i.e.
∑k

i=1 z f
i = 0.0, the analysis per-

turbations produced by the ETKF defined above are not nec-
essarily centred around the analysis (

∑k
i=1 za

i �= 0.0). A simple
transformation that will preserve Pa and centre the analysis per-
turbations about the analysis is the simplex transformation first
proposed by Purser (1996) (see, also Julier and Uhlmann, 2002;
Wang et al., 2004). As derived by Wang et al. (2004), CT is
one of the solutions of this transformation. Hence, in this paper,
the spherical simplex form of the ETKF transformation Za =
Z f TCT will be used to create the initial ETKF perturbations.

Since the number of ensemble members is too small compared
with the nominal degrees of freedom of model state space and
since the model error is neglected, the analysis error covariance
is greatly underestimated by the covariance of the transformed
ensemble. Therefore, it is necessary to inflate the analysis per-
turbations. The inflation method proposed by Wang and Bishop
(2003) assumes that the global sum of squares of the difference
between a forecast and observation at the same time does not
depend on the initialization of the forecast. It also assumes that
the number, quality and location of observations are similar at all
analysis times. While none of these assumptions are met in an op-
erational system, one of the aims of this paper is to see whether
the ETKF can outperform breeding even when the method of
defining an inflation factor is ill posed. Further details of this
inflation procedure can be found in Wang et al. (2004).
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2.2. Experimental setup

Our experiments run from 31 December 2002 to 17 February
2003, however, our study will focus on the 32-d period from
15 January 2003 to 15 February 2003. There are 10 ensemble
members in both the ETKF and breeding-based systems. The ob-
servations used are from the conventional data set in the NCEP
global data assimilation system. This conventional data set con-
tains mostly rawinsonde and various aircraft data, and wind data
from satellites. Almost all the observational operators in the con-
ventional data set are linear (Wan-shu Wu, personal communica-
tion). Both the ETKF and breeding ensembles are cycled every
6 hr in accordance with the NCEP data assimilation system, in
which new observations are assimilated in consecutive 6-hr time
windows centred at 00, 06, 12 and 18 UTC. The operational
breeding system at NCEP was cycled every 24 hr at the time
of the experiments, and was later upgraded to a 6-hr cycle in
March 2004. This is the only difference between our experimen-
tal breeding system and the NCEP operational system.

The number of observations depends on the observation and
telecommunication procedures and generally changes from one
cycle to the next. Detailed observations can be found at NCEP
web sites, such as http://www.emc.ncep.noaa.gov/gmb/ssaha. In
general, the number of conventional observations per unit surface
area is larger over North America, Western Europe and South-
East Asia than other regions. The variation of total number of

Fig. 1. The number of observations at different cycles during the
experimental period over the globe.

observations over the globe at different cycles for this time period
is shown in Fig. 1. As usual, the number of observations over the
Northern Hemisphere is much larger than that over the Southern
Hemisphere (not shown). In the following two sections, we will
present the results as described in the Introduction.

3. Results from a comparison between ETKF
and breeding ensembles

3.1. Impact of observations on the ensemble spread

One of the main attractions of using an ETKF ensemble gen-
eration is that it allows ensemble variance to reflect the impact
of variations in observational density on analysis and forecast
error variance, provided the ensemble is large enough. To mea-
sure the impact of observations on ensemble variance, we will
use a total energy measure of ensemble variance. This measure
is considered the most appropriate for weather forecast and data
assimilation (Palmer et al., 1998). For one perturbation, the total
energy is computed from winds and temperature using

E(i, j, k) = 1

2

[
u2(i, j, k) + v2(i, j, k) + Cp

Tr
T 2(i, j, k)

]
, (5)

where i , j , k are indices for the horizontal and vertical directions
in grid point space and u, v, T are the wind components (East–
West, North–South) and temperature perturbations, respectively.
Cp = 1004.0 J kg−1 K−1 is the specific heat at constant pressure
for dry air and Tr is the reference temperature, following the
definition used in Rabier et al. (1996), Wang and Bishop (2003)
and Wei and Toth (2003).

Figure 2 shows global distributions of the energy spread
of analysis perturbations and the ratios of analysis and fore-
cast spread averaged over all levels for both ETKF (left panel)
and breeding (right panel) ensembles. For the ETKF ensemble
(Fig. 2a), the energy spread of analysis perturbations in the
Northern Hemisphere is generally lower than that in the Southern
Hemisphere, particularly in the North American and Eurasian re-
gions, due to the larger number of observations in these regions.
The lowest energy spread is shown in the tropics where the error
growth is small over 6-hr intervals.

A clearer picture of the impact from observations is given
by the ratio of the analysis and forecast spread. This is shown
in Fig. 2c. This ratio represents the rescaling factor from the
forecast to analysis spread. In North America, Asia and Europe,
where there are more data, the rescaling factors are low. In the
Southern Hemisphere, the values of rescaling factors in the areas
which are covered by satellite data are lower than in areas which
are missed by the satellites. The energy spread distributions
of analysis perturbations from breeding ensembles, shown in
Fig. 2b, do not show the observation impact because observa-
tions are not used. The rescaling factors in breeding are designed
empirically from climatology data, with lower scaling factors in
the North American and Eurasian regions where traditionally
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Fig. 2. Vertically averaged global distribution of energy spread of analysis perturbations and the ratios of the analysis and forecast spread, for both
ETKF and breeding ensembles with (a) energy spread of ETKF; (b) energy spread of breeding ensemble; (c) ratio of analysis spread/forecast spread
for ETKF and (d) ratio of analysis spread/forecast spread for breeding ensemble.

there are more observations. More details can be found in Toth
and Kalnay (1993; 1997). It is obvious that the ETKF ensemble
reflects time-dependent observations better than the breeding en-
semble. Breeding initial spread is controlled by the mask which
was designed to reflect the long-time average of analysis error
variances. The rescaling factors in the breeding ensemble are
particularly low in North America and Europe. One noticeable
difference is that the ETKF rescaling factor distribution is nois-
ier than that in the breeding ensemble. This noise is reminiscent
of a similar plot shown in Wang and Bishop (2003) for their
8-member ETKF ensemble, but not of the plot corresponding to
Wang and Bishop’s (2003) 16-member ETKF ensemble. Thus,
the noisiness of this plot suggests that with only 10 members the
ETKF ensemble might benefit from some sort of masking (Toth
and Kalnay, 1997). The relationship between forecast error vari-
ances and ensemble variances for both systems will be studied
in detail in Subsection 3.6.

To see the vertical distributions of energy spread, we average
the energy spread at all grid points at each level. In Fig. 3a, we
show the vertical distributions of energy spread for the analysis
(solid) and forecast (dotted) perturbations, and the rescaling fac-
tors (dashed) from both ETKF (thick lines) and breeding (thin
lines) ensembles. In both ensemble systems, the analysis and
forecast perturbations have relatively larger energy spreads be-
tween 600 mb and 200 mb. However, the averaged rescaling
factors remain very uniform at all levels. The average values of
both analysis and forecast perturbation spreads, over all levels,
are larger in the ETKF ensemble than in the breeding ensemble.

They are 2.172 and 2.222 for the ETKF analysis and forecast per-
turbations, respectively, while for the breeding ensemble these
values are 1.602 and 1.694. The generally larger spread for the
ETKF is because the innovation-based inflation factor method is
applied for the ETKF initial perturbations whereas no inflation
is applied for the breeding whose initial perturbation magnitude
is constrained by the mask only. The generally larger spread for
the ETKF in this experiment setup may contribute to the fact
that the individual and averaged bred perturbations grow faster
than ETKF perturbations in most cases. This will be discussed
in detail in the next sections.

Figure 3b shows the energy spread distribution of analysis
and forecast perturbations by latitude for both ensemble sys-
tems. Unlike the distribution in the vertical direction in Fig. 3a,
the latitudinal distributions of energy spread from the two en-
semble systems are quite different. The result is consistent with
the horizontal distributions in Figs. 2a and 2b. Generally, the
ETKF ensemble has a lower energy spread in the tropics where
baroclinic instability is relatively low, and a high spread near
the North Pole. In the Southern Hemisphere, ETKF ensemble
energy spread has a peak value around 50◦ South, close to the
Southern Ocean track region. In contrast, the breeding ensemble
has a lower energy spread mainly in the Southern Hemisphere; in
particular, it has a minimum in the Southern Ocean storm track
area. The failure to show higher spread in this region by the
breeding ensemble is related to the mask imposed on the system
(Toth and Kalnay, 1997). The results indicate that the mask used
by the breeding ensemble system needs to be improved. A more
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ETKF-BASED ENSEMBLE PERTURBATIONS 33

Fig. 3. Energy spread distributions of ETKF (thick) and breeding
(thin) ensemble perturbations (solid: analysis; dotted: forecast). The
ratio of analysis/forecast perturbations is indicated by the dashed line.
All the values are averaged over the period 15 January–15 February
2003, with (a) vertical distribution as a function of pressure; (b)
distribution by latitude.

accurate time-dependent mask can be built from the analysis er-
ror variances generated by a mature operational data assimilation
system like NCEP 3-D Var.

3.2. Impact of WSR data

Having studied the impact from a large number of observations
in the above subsection, we will look for signals from a small
number of observations. Several days of Winter Storm Recon-
naissance (WSR) data will be used to see if there is any influence
from WSR data.

To test the impact of observations, we reran the ETKF
experiments with slightly different observation data at par-
ticular times. In the new experiments, we removed the WSR
data at 00 UTC on 19, 26, and 31 January and 01, 03, 08, and
09 February 2003. Details about the 2003 WSR data can be found
at http://wwwt.emc.ncep.noaa.gov/gmb/targobs/target/wsr2003.
html. Each experiment started from the same initial conditions
as the original experiments for the previous cycle (i.e. 6-hr
earlier). The new analysis perturbations on these seven days,
at 00 UTC without WSR data, will be compared with those
using the WSR data. On each day at 00 UTC, there are about 20
observations. Thus, in each of the seven cases, the difference
between the experiments without and with WSR data will reflect

the impact of those 20 observations only. The average results of
these seven cases are shown in Fig. 4.

Figure 4 shows the differences between the two experiments
without and with WSR data for the vertically averaged anal-
ysis spread for temperature (Fig. 4a) and wind (Fig. 4b). The
differences in the ratios between analysis and forecast spread
from the two experiments are shown in Figs. 4c and 4d for tem-
perature and wind, respectively. The black crosses indicate the
locations of WSR data. It is clear that when WSR data are re-
moved, analysis perturbations are larger over the region where
the WSR was taken. Indeed, WSR data reduced the ensemble
analysis variance by 1–2% for these seven cases with just a
10-member ensemble. These results demonstrate how increasing
the observational density decreases ETKF ensemble variance.
Note that in some areas outside the WSR data region, primarily
near the equator, there is some noise. Convection near the tropics
is more active than in other regions, and any differences, includ-
ing slightly different initial conditions, which might come from
the global model integration scheme will amplify quickly. An
ensemble with large number of members may limit this kind of
behaviour.

3.3. Variance distribution and the effective number of
degrees of freedom of perturbations

Wang and Bishop’s (2003) results indicated that the ETKF main-
tains significant variance in a substantially larger number of di-
rections than breeding. Here, we investigate this hypothesis for
the case of a small 10-member ensemble and real-time observa-
tions.

The forecast and analysis covariance matrices in normalized
observational space are A f A f T

and AaAaT
, respectively, where

Aa = R−1/2HZa and A f are defined in Section 2. The variances
in different eigendirections are represented by the correspond-
ing eigenvalues of the covariance matrices. Figures 5a and 5b
show the averaged eigenvalues of A f A f T

(a 6-hr forecast co-
variance matrix in normalized observational space) over the 32-
d test period for the ETKF ensemble and breeding ensemble,
respectively. In both schemes, there are only nine independent
directions out of 10-ensemble members since the initial pertur-
bations are centred around the analysis.

Figures 5a and 5b show that, as in Wang and Bishop (2004),
the eigenvalue spectrum of the ETKF ensemble is significantly
flatter than that of the breeding ensemble, if all nine nonzero
eigenvalues are considered. However, the last four eigenvalues
of the breeding ensemble are close to zero only because, by con-
struction, the breeding ensemble is initialized with five pairs of
identical but oppositely signed initial perturbations. As such, it
is appropriate to note that the 1st and 5th ETKF eigenvalues are,
respectively, 3.26 × 104 and 2.2 × 104, while the 1st and 5th
eigenvalues of breeding are, respectively, 4.4 × 104 and 0.8 ×
104. Hence, even when only the first five eigenvalues are con-
sidered, the eigenvalue spectrum of the ETKF is considerably
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34 M. WEI ET AL.

Fig. 4. The difference of vertically averaged analysis spread for (a) temperature and (b) wind, between two experiments with and without WSR data
for ETKF system. The difference in analysis/forecast spread for (c) temperature and (d) wind, between the same two experiments.

flatter than that of the eigenvalue spectrum from the operational
breeding scheme. Presumably, the reason for this difference is
that Kalman filter error covariance update equation used by
the ETKF accounts for the fact that the factor by which good
data assimilation schemes reduce errors in any given direction
is an increasing function of the error in the direction. Conse-
quently, the ETKF procedure of transforming forecast perturba-
tions into analysis perturbations explicitly flattens the eigenvalue
spectrum.

A quantitative measure of the flatness of the spectrum is the
number of degrees of freedom of the subspace spanned by the
ensemble perturbations. Here, we use the dimension described in
Patil et al. (2001). It was called the bred dimension by Patil et al.
(2001), because the authors studied the subspace spanned by the
BVs in their paper. A similar definition was used by Bretherton
et al. (1999), where it was called the effective number of spa-
tial degrees of freedom. It was called the Ensemble Dimension
(E dimension) by Oczkowski et al. (2005) since it was used to
measure the subspace of ensemble perturbations. Unlike the ma-
trix rank that counts the number of nonzero singular values, this
measure takes account of the relative values of variance in dif-
ferent directions, and removes the ambiguity of small nonzero
variances due to, say, computing errors. We believe this defini-
tion is useful in measuring the dimensions of subspaces spanned
by any vectors, not just ensemble perturbations. In this paper,

we call it the EDF of subspace spanned by the ensemble pertur-
bations.

Figure 5a shows that in normalized observation space the EDF
of the subspace spanned by the 10 ETKF ensemble forecast per-
turbations is 8.90, due to the variation of variances in different
directions. It should be noted that the rank of the forecast co-
variance matrix is 9 when the relative variance values in differ-
ent directions are not considered. The same time mean variance
along different directions in the same normalized observational
space for BVs is also computed. This is shown in Fig. 5b. As
expected, the variances are overwhelmingly in the first five BVs,
and one half of the BVs have variances close to zero. Hence,
the ETKF spectrum is much more evenly distributed. The EDF
in bred vector space is 5.89, which is much lower than that in
the ETKF implementation. The main reason for this low di-
mensionality of bred vector space is that, as mentioned earlier,
in the NCEP operational ensemble forecast system the initial
BVs are in pairs, i.e. a plus/minus strategy was implemented
(Toth and Kalnay, 1993; 1997). The same strategy was also em-
ployed in the ECMWF ensemble forecast system, where 25 SVs
were added to and subtracted from the analysis in pairs to make
50 perturbed members (Molteni et al., 1996). It is expected that
the EDF of the subspace spanned by initial SVs is also reduced by
half. Since 28 September 2004, ECMWF has used multivariate
Gaussian sampling from SVs to construct initial perturbations.

Tellus 58A (2006), 1
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Fig. 5. The averaged variance distributions along different
eigendirections of forecast (diamond) and analysis (square) covariance
matrices in the normalized observational space for the (a) ETKF
ensemble and (b) breeding ensemble. Also, shown diagrams are the
EDF values of 5 and 10 perturbations.

They are going to compare the results from both paired and non-
paired strategies (Martin Leutbecher and Roberto Buizza, 2005,
personal communication).

It is true that by using paired initial perturbations in an ensem-
ble forecast system, like the NCEP and earlier ECMWF systems,
EDF values of the ensembles are reduced by half. If we want to
use an ensemble forecast system to produce a background co-
variance matrix for a data assimilation system, then the ensemble
with a larger EDF value is surely better. However, the EDF is
just one of many measures that have been used to verify ensem-
ble perturbations. The compromise of EDF does not necessarily
reduce the ensemble performance in other aspects. For instance,
earlier experiments in the 1990s carried out at both ECMWF
and NCEP showed that for the same number of members, the
anomaly correlation score, which is the most frequently looked
at by forecasters, were generally higher for paired ensembles
than unpaired (Zoltan Toth and Roberto Buizza, 2005, personal
communication). This was probably the main reason why both
NCEP and ECMWF chose to use paired perturbations. In an-
other comparison experiment, we carried out in Wei and Toth
(2003), it was clearly shown that the PECA (perturbation versus
error correlation analysis) value increases with the number of en-
semble members in both NCEP and ECMWF operational paired
systems. At NCEP, we also had results showing that other scores
can be increased with a larger number of members in either the

paired or unpaired systems. These scores include ranked prob-
ability skill score, Brier skill score, ROC area and economic
values. In the following, when the EDF is computed we may
show the results for both 10 and 5 members from each system.

If we consider only the normalized observation subspace
spanned by the first five directions with the largest variances,
the EDFs are 4.97 and 4.56 for the ETKF and breeding pertur-
bations, respectively. Thus, under this measure, the difference
between the EDFs of the two systems are not as large as when
we consider all 10 members.

Because the Kalman filter error covariance update equation
can be explicitly shown to whiten (or flatten) the eigenvalue
spectrum in normalized observation space, the EDF of the ETKF
analysis perturbations has the maximum value in observational
space. In grid point space, we expect the EDF values of pertur-
bations to be smaller. Therefore, the impact of observations can
be seen from a comparison of EDF values in observational and
grid point spaces.

Figure 6a shows the temporal evolution of the EDF’s for 10
three-dimensional temperature perturbations in grid point space
over 32 d. The EDFs of the subspaces spanned by the 6-hr fore-
cast perturbations are 8.4 and 5.8 for ETKF and breeding, re-
spectively. Figure 6a also shows that the temporal variation of
EDF over the 32-d period is greater for breeding than for the
ETKF. In particular, around day 25 the breeding EDF decreases
by about 20% compared with earlier values, while the ETKF
EDF is largely unchanged.

Since observations are so irregularly distributed along the ver-
tical levels and there are very different numbers of observations
at different levels, the impact from different numbers of obser-
vations at different levels on the perturbation structures in the
ETKF system can be studied by looking at the vertical distribu-
tion of EDF. Figure 6b shows the vertical distribution of time-
averaged EDFs computed for 10 two-dimensional (horizontal)
perturbations. The figure shows that while the two-dimensional
EDFs of the breeding perturbations increase significantly from
900 mb to 400 mb, the corresponding ETKF EDFs show much
less variation between 900 mb and 400 mb. The figure also shows
that while the EDF of the breeding perturbations increases sig-
nificantly between the analysis and the 6-hr forecast time, the
ETKF EDFs shows a very slight decrease between analysis and
forecast time.

As discussed earlier, it is impossible for the paired breeding
scheme to have an EDF greater than 5 at the initial time. As
such, it is of interest to consider EDF results when only five
perturbations are considered. Figures 6c and 6d show that the
EDFs of the two schemes are much closer in this case. They also
show that even when only five perturbations are considered, the
temporal and vertical variation of the EDF is greater for breeding
than the ETKF.

In the following, we will look at the local EDF distribu-
tions at grid points for different pressure levels. Using the
method described by Patil et al. (2001), we calculate the EDF of
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Fig. 6. The EDF of subspace spanned by
temperature perturbations (solid: analysis;
dotted: 6-hr forecast) from ETKF (thick) and
breeding (thin) ensembles for (a) EDF of
subspace spanned by 10 perturbations in
three-dimensional grid point space, at
different cycles during the period of
experiments; (b) EDF of subspace spanned
by 10 perturbations in two-dimensional grid
point space at each pressure level; (c) as in
(a), but for five perturbations; (d) as in (b),
but for five perturbations.

horizontal subspaces spanned by the five analysis perturbations
from each ensemble that covers only (2L + 1)(2L + 1) hori-
zontal grid points, where L is the number of grid points near the
central points in each direction. The EDF value from this local
subspace is defined as the EDF of the central grid point. The
EDF distribution at each level can be calculated by moving the
central grid point. The local EDF distribution measures the ex-
tent to which the ensemble perturbations are independent in the
selected region. Perturbations constructed from different regions
with different domain sizes (i.e., different values of L) will have
different EDF values. Hence, the local EDF distributions give us

Fig. 7. Local EDF for different numbers of grid points for average
local EDF as a function of L, which is described in the text.

information about how evenly the variances are distributed along
different directions, and to what extent these ensemble perturba-
tions are truly independent in that region. EDF was extensively
used by Oczkowski et al. (2005) and Szunyogh et al. (2005),
who related the local EDF distribution to local error growth and
predictability in their data assimilation and predictability studies
of the atmospheric system.

We note that the local EDF depends not only on the number
of grid points we choose, but also the number of perturbations
we use. In our experiments, the numbers of perturbations are the
same for the two systems. To see the dependency of local EDF on
the number of grid points, we carry out experiments for L = 3, 6,
9, 12, 15. Figure 7 shows the average EDF values over all three-
dimensional grid point spaces for the five experimental cases
for both ETKF (square) and breeding (diamond) ensembles. For
perturbations in smaller areas, ETKF ensemble perturbations
have higher degrees of freedom than the breeding perturbations,
however, the bred perturbations have the advantage from L = 9
to L = 15. Since Figs. 6c and 6d show that the ETKF has higher
EDF when all horizontal grid points are considered, it is clear
that at some point between L = 15 and the L value that covers the
globe, the ETKF’s EDF must again exceed breeding’s EDF. The
results show that perturbations generated by both breeding and
ETKF ensembles have different local EDF values for different
local perturbations.
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3.4. Amplification of perturbations

WB’s results indicated that the growth rate of the most rapidly
growing linear combination of ETKF perturbations signifi-
cantly exceeded that of the corresponding optimal combination
of breeding perturbations. Later experiments showed that the
growth rates of perturbations in their global model were highly
sensitive to the initial amplitude of the perturbations. In partic-
ular, it was found that perturbation growth rate increased as the
size of the initial perturbations was diminished. While in WB
the breeding technique was constructed so as to ensure that the
breeding perturbations had about the same global amplitude as
the ETKF perturbations, in the experiments reported here, the
ETKF perturbations have a significantly larger amplitude than
the breeding perturbations (see Fig. 3). Despite this discrepancy,
it is of interest to compare growth rates between the two sets
of ensemble perturbations. In addition, WB never compared the
growth rates of individual perturbations from the two systems,
but it is of considerable interest to measure this growth. The
maximum amplification factor (AFs) from a linear combination
of perturbations is calculated using a method similar to WB and
Bishop and Toth (1999).

Figure 8 shows the AFs for different forecast lead times aver-
aged from 00 UTC January 15 to 00 UTC 15 February 2003. The

Fig. 8. Amplification factors of ensemble perturbations for (a) the
average AF from 10 perturbations as a function of lead time (thick:
ETKF; thin: breeding); (b) the maximum AF of optimally combined
orthogonal perturbations from 10 original perturbations (thick: ETKF;
thin: breeding); (c) the AF of 10 individual perturbations for two
forecast lead times (solid: 6-hr; dotted: 48-hr; triangle: ETKF;
diamond: breeding).

Table 1. Amplification factors of 500-mb geopotential height at 6-hr
forecast lead time

Average AF for all individual perturbations

GL TR NH SH

Breeding 1.112 1.282 1.105 1.103
ETKF 1.091 1.621 1.096 1.082

AFs are computed for both the individual perturbations and op-
timally combined orthogonal perturbations from both the ETKF
and breeding-based systems. Figure 8a shows the average AFs
for 10 perturbations at 500-mb geopotential height (thick: ETKF;
thin: breeding) lines. It is clear that the average AF from in-
dividual perturbations in the breeding ensemble is larger than
that from the ETKF ensemble for both shorter and longer lead
times. As discussed below, we suspect the lack of ETKF growth
is probably linked to the fact that the initial ETKF are signifi-
cantly larger than initial breeding perturbations. We only show
results out to 2 d, since the calculation of AF for optimally com-
bined orthogonal perturbations assumes the perturbations are
linear.

Shown in Fig. 8b are maximum AFs of the optimally com-
bined orthogonal perturbations from the 10 original perturba-
tions of both systems as a function of lead time. The AF of the
ETKF ensemble is larger than that of the breeding ensemble
for forecast lead time up to 1.8 d. While the individual ETKF
perturbations grow slightly slower than the breeding, the maxi-
mum AF from the optimally combined orthogonal perturbations
from 10 ETKF perturbations is larger than that from the breeding
ensemble. This is related to the fact that the EDFs of the sub-
space spanned by the 10 ETKF perturbations are much larger
than that from breeding ensemble (Figs. 6a and 6b) due to sim-
plex and pairing schemes used in the two systems and also the
whitening effect of the error covariance update equation used by
the ETKF. For instance, if five members are chosen from each
system, then the EDFs of subspace spanned by the five pertur-
bations are similar for both the ETKF and breeding systems as
shown in Figs. 6c and 6d, and the maximum AF of optimally
combined perturbations is larger for breeding than ETKF (not
shown). To see the growth rate of each individual perturbation
from the two systems, we show the AF for each perturbation at
6-hr (solid) and 48-hr (dotted) lead times in Fig. 8c. At these two
lead times, each breeding perturbation has a larger AF than the
corresponding ETKF perturbation.

A likely reason for the individual bred perturbations having a
larger AF than the ETKF perturbations for 500-mb geopotential
height is that as mentioned previously, the AF is related to the
initial perturbation size. The ETKF perturbations have a much
larger spread below 150 mb (see Fig. 3a) than bred perturbations.
This is also one of the reasons that ETKF perturbations have
lower AF values, as shown in Fig. 8a. To demonstrate this, we
compute the AFs of perturbations from both systems for different
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Fig. 9. The PECA values for ETKF (thick)
and breeding (thin) ensembles from 10
(a and b) and 5 perturbations (c and d).
Shown in dotted and solid lines are PECA
from the optimally combined perturbations
and the average PECA from individual
perturbations.

regions. Figure 3b shows that the initial spread of ETKF pertur-
bations is much larger than bred perturbations globally and in the
Northern and Southern Hemisphere regions, but much smaller in
the tropics. We then compare the AF values of perturbations from
the two systems for 6-hr lead times in these different regions.
Table 1 lists the average AF values of all individual perturbations
for both ensemble systems in all these regions. In the global,
Northern and Southern Hemisphere regions where the ETKF
ensemble has a larger spread, the AFs of bred perturbations are
larger. However, in the tropics where the ETKF has a smaller
initial spread, the AFs of ETKF perturbations are larger.

3.5. Representing forecast error covariance
and reliability

One measure of the performance of initial perturbations in en-
semble forecasting is a direct comparison of the ensemble per-
turbations with the forecast errors. In this subsection, we use
PECA to study the correlation between ensemble perturbations
and forecast errors, as described in Wei and Toth (2003).

The PECA values from 10 perturbations for the two ensem-
ble systems (thick: ETKF; thin: breeding) for the global and

Northern Hemisphere regions are displayed in Figs. 9a and 9b,
respectively. Shown in dotted and solid lines are the PECA for
the optimally combined perturbations and the averaged PECA
from individual perturbations. At short forecast lead times breed-
ing perturbations still have the advantage, but ETKF perturba-
tions have higher PECA values than breeding perturbations after
day 1. Perturbation versus error correlation analysis values for
ETKF are increased more than for breeding compared with the
5-member results (Figs. 9c and 9d). This is particularly clear for
PECA from optimally combined perturbations (dotted lines).
This is also related to the fact that EDF in the 10-member ETKF
ensemble is much higher than that in the 10-member breeding
ensemble. The same results for five chosen perturbations for the
two systems are shown in Figs 9c and 9d. For short forecast lead
times (6 to 24 hr), bred perturbations have higher PECA val-
ues than the corresponding ETKF perturbations. If we consider
data from only every 5th day as independent (not shown), the
PECA values for the breeding method in the global and Northern
Hemisphere domains for the 6- and 12-hr lead times are higher
than for the ETKF method at the 90% (or higher) statistical sig-
nificance level. The breeding and ETKF systems show similar
PECA values beyond a 24-hr forecast lead time.
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Fig. 10. Derived ensemble variance and
forecast error variances at all grid points for
500-mb temperature, for ETKF (left panel)
and breeding (right panel); for global (top),
Northern (middle) and Southern (bottom)
Hemisphere regions. The average value from
each of 320 bins is indicated by solid lines.
Dotted lines show the results from 20 bins
only.

While PECA values indicate the correlations between ensem-
ble perturbations and forecast errors, it is also interesting and
important to compare the ensemble variance with the forecast
variance for the two 10-member systems. To analyse how well
the ensemble variance can explain the forecast error variance,
we follow the method used in Majumdar et al. (2001; 2002) and
Wang and Bishop (2003). First, we compute the ensemble vari-
ance and squared error of temperature at each grid point at the
500-mb pressure level for a 6-hr forecast lead time. A scatter
plot (which is not shown) can then be drawn by using ensem-
ble (abscissa) and squared forecast errors for all grid points. We
next divide the points into 320 equally populated bins in or-
der of increasing ensemble variance. The ensemble and forecast
variances are then averaged within each bin. It is the averaged
values from each bin that are plotted (solid) in Fig. 10. If the

number of bins is reduced, it is expected that the curve will be
smoother. The result from 20 bins is shown by a dotted line. The
variance relationship between ensemble and forecast is studied
globally (top panel), and for the Northern (middle panel) and
Southern (bottom panel) Hemispheres. The results for ETKF
and breeding ensembles are shown in the left and right panels,
respectively.

The results from the 20-bin case (dotted line) show that the
range of forecast error variance (maximum minus minimum val-
ues) explained by the ensemble variance is larger for ETKF
(5.03) than breeding (2.77) in the global region (Figs. 10a and
10b). This shows that ETKF is better than breeding at being able
to distinguish times and locations where forecast errors are likely
to be large from the times and locations where forecast errors
are likely to be small. For the other two regions, the ranges of
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forecast variances from ETKF are also slightly larger compared
to the breeding ensemble.

The standard anomaly correlation scores for 500-mb height
from the two 10-member systems show that the breeding ensem-
ble has slightly higher scores than the ETKF in both Northern
and Southern Hemispheres (not shown). It is known that these
scores can be influenced by the magnitude of the initial spread
(Buizza et al., 2005). As Fig. 3 shows, the initial spread of ETKF
is generally larger in both Northern and Southern Hemispheres.
This may reduce the anomaly correlation scores of the ETKF en-
semble. A conclusion will be drawn from the future comparison
with both systems having similar initial spread.

The analysis rank histograms (Toth et al., 2003) from the
two systems (each with 10 members) for different forecast lead
times are also studied (not shown). The results from the rank his-
tograms for different lead times can be more concisely summa-
rized in average percentage of excessive outliers (APEO) (Buizza
et al., 2005). APEO is a measure of statistical reliability. It is
the percentage of cases where the verifying analysis at any grid
point lies outside the cloud of the ensemble in excess to what
is expected by chance. A reliable ensemble will have a score of
zero, while larger positive values indicate more outlier verifying
analysis cases than expected from chance. The APEO values of
500-mb height in the Northern Hemisphere from the two en-
sembles show that the two systems have similar values for short
lead times up to day 1. After day 1, the ETKF ensemble has
lower APEO than the breeding system for up to nine days. The
differences between the two systems are about 3–7%. After 9 to
10 d, the difference is reduced slightly. The results indicate that
the ETKF ensemble has flatter rank histograms than the breeding
ensemble and is more reliable. In general, APEO value could be
reduced by larger spread. The fact that the ETKF ensemble has
larger initial spread than breeding could have played a role the
comparison.

3.6. Consistency between forecast and
analysis perturbations

In this subsection, we evaluate the consistency between the fore-
cast and corresponding transformed analysis perturbations. This
consistency will be measured by computing the correlation be-
tween each of short-range ensemble forecast and its correspond-
ing analysis perturbation. High correlation values indicate that
the generation of new initial perturbations introduces minimal
changes to the forecasts from which the analysis perturbations
are derived; this means that there is a strong similarity between
each short-range forecast and its corresponding analysis pertur-
bation, and consequently, the individual perturbations exhibit a
strong temporal consistency from one forecast cycle to the next.

Temporal consistency of ensemble forecasts from one cycle to
the next in a general sense was discussed by Toth et al. (1997), and
a quantitative measure of such consistency was offered in Toth
et al. (2003). The temporal consistency of individual members, to

our knowledge, has not been explicitly discussed in the literature.
However, such consistency may be a desirable characteristic of
an ensemble forecast system for a number of applications. First,
one can argue that the smaller the changes that the perturbation
generation step introduces into the ensemble forecasts, the less
the chance that the dynamically relevant information (e.g., the
estimate of the fastest-growing perturbation directions) will be
contaminated by any noise (i.e., dynamically not relevant in-
formation) in the process. A noise reduction in ensemble-based
data assimilation has been shown to have a positive effect on the
quality of the ensemble by, e.g., Whitaker and Hamill (2002). In
their ensemble-based data assimilation work, Ott et al. (2004),
in fact introduced a constraint aimed at limiting the changes ap-
plied to the forecast perturbations when deriving their analysis
perturbation fields.

Second, the temporal consistency of ensemble perturbations
as defined above can be useful in various applications of global
ensemble forecasting, such as ocean wave, land surface, and hy-
drologic ensemble forecasting. Ocean waves, for example, are
sensitive to wind forcing over a period of several days, and their
numerical analysis is strongly dependent on past analysis of wind
fields (Hendrik Tolman, 2005, personal communication). Ideally,
one would desire to have a number of a series of perturbed anal-
ysis fields from the recent past that each constitutes a realistic
perturbed scenario in time. Wind perturbations that are uncor-
related with perturbations at earlier times may cancel the ocean
wave perturbations generated earlier and overall may spuriously
reduce the magnitude of the ocean wave ensemble variance.

Third, statistical postprocessing and subjective forecast appli-
cations can potentially add extra value by utilizing the temporal
consistency in the ensemble perturbations. Depending on the
strength and time scale of the temporal correlations, the per-
turbed member with the best performance at a short lead time
may produce one of the best members at subsequent initial times
as well (Peter Manousos, 2005, personal communication).

As for the three main ensemble generation methods (Buizza
et al., 2005), the SV-based methods (Buizza and Palmer, 1995),
by definition, exhibit no temporal correlation as defined above.
Perturbation methods using ensemble-based data assimilation
techniques (Houtekamer et al., 1996) that have no built-in con-
straints can also be expected to yield low correlation values as
well.

In the breeding ensemble, analysis perturbations are scaled
from the 6-hr forecast perturbations. That is, za

m(i , j) =
αm(i , j) z f

m(i , j), where αm(i , j) is the rescaling factor derived
from a mask field for ensemble member m and grid point i ,
j in horizontal space. In the case of a single global rescaling
factor αm(i , j) = constant at every cycle, the correlation be-
tween analysis and forecast perturbations will be 1.0. In this
case, the spatial variations in analysis errors are not accounted
for. In the procedure called regional rescaling, a mask, that has
been constructed to describe spatial variations in analysis un-
certainty, is used as a target for the amplitude of the analysis
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perturbations [whose magnitude is measured using a strong spa-
tial smoothing, see Toth and Kalnay (1997)]. At every grid point,
the rescaling factor applied in the regional rescaling version of
the breeding method is determined as a ratio of the target pertur-
bation value given in the mask field with the spatially smoothed
value of the forecast perturbation amplitude. It is expected that
the correlation values between za

m and z f
m in a bred ensemble

that uses the regional rescaling procedure described above will
be below one (due to the use of spatially dependent rescaling
factors) but relatively high, due to the use of the strong smooth-
ing factor used in the norm of the rescaling procedure (ensur-
ing that the rescaling factors change in a smooth fashion in
space).

In ETKF theory, the 6-hr forecast perturbations are trans-
formed into analysis perturbations based on Kalman filter theory,
taking the observation information into account, such as

Za = Z f TCT = Z f C(Γ + I)−1/2CT . (6)

The transformation from forecast to analysis perturbations
can be described in three steps. First, the forecast perturbations
Z f are rotated by C, then they are scaled by (Γ + I)−1/2. Fi-
nally, they are rotated again by CT which is a simplex trans-
formation. The main purpose of the simplex transformation
is to centre the transformed perturbations around the analy-
sis field while preserving analysis covariance. In the first step,
the forecast perturbations are rotated into different directions,
while the second step only rescales the rotated perturbations.
It can be expected that without the last step, simplex transfor-
mation CT , the rotated and scaled perturbations would have
a low correlation with the original forecast perturbations, de-
pending on how much the perturbations are rotated. However,
with the simplex transformation the rotated and scaled per-
turbations are rotated towards the directions that are opposite
to the first-step rotation by C. If the eigenvalue distribution
Γ is completely flat, the correlation between Za and Z f will
be 1.0.

Shown in Fig. 11a are the averaged correlation values, over
10 members, between the forecast and analysis perturbations
for ETKF (thick) and breeding (thin) ensembles at different
times. The correlation between the forecast and analysis per-
turbations at each level is computed for both ensemble systems.
The mean correlation over all levels is shown for each system.
The results show that the mean correlation in the ETKF ensem-
ble over different model levels is consistently higher than that
in the breeding ensemble, although the mean correlation varies
with time in both ensemble systems. At different pressure levels,
the correlation between the corresponding forecast and analysis
perturbations changes little for ETKF ensemble. However, for
the breeding ensemble the correlation at different levels varies
more, particularly at the top model level (2 mb, not shown).
This variation with pressure level can be seen more clearly from
Fig. 11b, which shows the vertical distribution of average cor-
relation over time period from 15 January to 15 February 2003.

Fig. 11. Averaged correlation over 10 members between forecast and
analysis perturbations for ETKF (thick) and breeding (thin) ensembles;
(a) mean correlation as a function of time over all levels and (b) vertical
correlation distribution averaged over time.

The average correlation over the experimental period is almost
constant at different pressure levels for the ETKF ensemble,
while the breeding ensemble shows larger variations at different
levels.

The main reason for this extremely high correlation be-
tween analysis and forecast perturbations in ETKF is the sim-
plex transformation. Equation (6) shows that the correlation in
the ETKF ensemble is also influenced by the eigenvalue dis-
tribution Γ. The eigenvalue distribution is determined by the
number and locations of observations and the number of en-
semble members. In our experiment, the eigenvalue distribu-
tion of the forecast covariance matrix in normalized observa-
tional space is shown (by diamonds) in Fig. 5a. The EDF is
8.9 out of nine independent forecast perturbations. The vari-
ances are quite evenly distributed in different directions. The
correlation between analysis and forecast perturbations in the
ETKF ensemble is changed little by this distribution. We no-
tice that WB also showed a similar variance distribution in
their model with ideal observations. We can reasonably expect
that the analysis perturbations in most ETKF ensembles with
simplex transformations have high correlations with the fore-
cast perturbations, although the exact influence of the obser-
vations and the number of ensembles is hard to know. This
feature makes the ETKF-based ensemble system particularly
appealing.
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4. Discussion and conclusions

In this paper, we have carried out experiments with two ensemble
forecast systems based on two different techniques for generating
initial perturbations: ETKF and breeding. Results are presented
for a 32-d experimental period using the NCEP operational anal-
ysis/forecast system, and focusing on the characteristics of anal-
ysis and short-range forecast perturbations. One purpose of this
comparison between the ETKF and breeding ensembles is to see
if the ETKF-generated initial perturbations are more responsive
to observation distributions and are representative of the analysis
uncertainties, and whether the performance can be improved.

The properties of ETKF-generated perturbations are thor-
oughly studied from various aspects, such as the EDF of sub-
spaces spanned by perturbations in local, observational, global
2-D and 3-D grid point spaces, and optimally combined orthog-
onal perturbations with the largest AFs. The relative strengths
and weaknesses of the two systems are discussed and identi-
fied. The results presented in this paper for the first time offer
a valuable, comprehensive description of the performance of an
ETKF-based ensemble forecast system under a real-time obser-
vation environment.

The findings from our experiments are summarized as follows.

� The ETKF method is shown to produce initial perturba-
tions whose variance, as desired, is influenced by variations in
data coverage.

This is in contrast to some current operational techniques such
as the breeding technique at NCEP and the SV technique, al-
though other techniques such as the PO method used at MSC
and Hessian SVs at ECMWF (Barkmeijer et al., 1999) are ex-
pected to produce a similar result.

� Due to the small number of ensemble members used in the
ETKF experiment, the ETKF cannot represent the variations in
analysis error variance on the global scale as well as breeding
with geographical rescaling.

� The slope of the eigenvalue spectrum of the breeding en-
semble covariance matrix is clearly steeper than that of the
corresponding ETKF eigenvalue spectrum. The EDF of the
10-member ETKF ensemble is much larger than that of the paired
breeding ensemble.

This is related to the ensemble centring strategies used in the
two systems and also to the whitening effect of the error co-
variance update equation used by the cycling ETKF. A simplex
centring method was used in the ETKF, while a paired centring
scheme was used in the operational breeding system. For in-
stance, if five members (one from each pair) are chosen from
each system, the EDF values for the two systems are very sim-
ilar. To test this issue more cleanly, we would have needed to
follow Toth and Kalnay (1993; 1997) and Wang et al. (2004)
and generate a nonpaired breeding ensemble to compare against
the spherical simplex ETKF ensemble. Wang and Bishop (2003)

found that the ETKF-maintained variance in orthogonal direc-
tions much more effectively than breeding.

� Although the individual 10 bred perturbations grow faster
than the ETKF perturbations, the optimal perturbation growth
that can be found by linearly combining 10 forecast pertur-
bations is larger for the ETKF than for breeding for optimization
times less than 2 d. When only five perturbations are included
in the optimization, optimally combined bred perturbations have
higher growth rates for all lead times.

A good ensemble forecast system requires that the initial per-
turbations grow fast enough to match the growth rates of forecast
errors. Calculations, not reported here, show that perturbation
growth increases as perturbation amplitude is decreased. Our
findings are consistent with this expectation: in the extra-tropics,
where ETKF amplitude exceeds breeding amplitude, individual
bred perturbations grow faster than individual ETKF perturba-
tions whereas in the tropics, where ETKF amplitude is less than
breeding amplitude, individual ETKF perturbations grow faster
than individual breeding perturbations. In considering these re-
sults, it is worthwhile noting that the ETKF fits within the general
breeding framework and can be viewed as a form of breeding
in which the Kalman filter error covariance update equation is
used to constrain the transformation of forecast perturbations
into analysis perturbations.

� Perturbation versus error correlation analysis calculations
indicate that at short lead time, bred perturbations can explain
a larger portion of forecast error variance than ETKF perturba-
tions. Beyond 1-d lead time, however, 10 ETKF perturbations
are more efficient in explaining forecast error variance than the
bred perturbations.

Note that PECA values quantitatively measure how well lin-
ear combinations of ensemble perturbations match the forecast
errors. For longer forecast lead times any perturbation, includ-
ing ETKF ensemble perturbations, will turn towards the leading
Lyapunov vectors that are linked to the BVs (Wei, 2000; Wei
and Frederiksen, 2004).

� Ensemble Transform Kalman Filter forecast error variance
predictions were better than corresponding breeding predictions
at distinguishing at times and locations where forecast errors
were larger from times and locations where they were small.

� Both systems produce temporally consistent perturbation
fields.

It is found that 10-member ETKF analysis perturbations have
a very high correlation with forecast perturbations before the
ETKF transformation. The average correlation values for the two
systems are above 0.985 with the ETKF having slightly higher
value than that in a breeding system with regional rescaling.
This good feature of ETKF perturbations is due to the simplex
transformation imposed.
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� The forecast scores from the two 10-member systems are
similar with only slight differences.

The results show that the breeding ensemble has slightly
higher anomaly correlation than the ETKF ensemble in both
Northern and Southern Hemispheres. This result may be influ-
enced by the magnitude and geographical distribution of initial
perturbation variances in the two systems compared, as well as
the use of symmetric centring in the paired breeding scheme and
spherical simplex centring in the ETKF scheme.

� The APEO from the ETKF ensemble has lower value than
the breeding system in both Northern and Southern Hemispheres.
The results are based on 10 members for both systems. This is
consistent with the fact that the ETKF ensemble variance in this
experiment setup is generally larger than the breeding ensemble
variance.

We note that the above findings are from the experiments we
have carried out so far. There are still some clear limitations in
our study, such as

1. One should note that both theory and Wang and Bishop’s
(2003) results indicate that potential for the ETKF ensemble
to outperform the masked breeding ensemble increases as the
ensemble size is increased. Also, it is important to inflate the
analysis perturbations properly. Here, we used the same infla-
tion strategy as WB. It worked fine in their environment with
idealized observation system. However in our operational envi-
ronment with real observations, the inflation strategy needs to
be improved. At present, how to correctly inflate the analysis
variances remains a challenging research issue for the ensemble
Kalman filter research community. To avoid the effect of possible
ill-posed inflation factor on the ETKF in the current comparison
with the breeding and also to ameliorate the effect of perturba-
tion magnitude on the comparison of perturbation growth, one
simple way would be to inflate the ETKF initial perturbations so
that on a globally averaged basis the initial ensemble variance
of the ETKF was equivalent to that of the operational breeding.
Alternatively, to handle the problem of varying number of ob-
servations, instead of using just the current observations, we can
also try to use previous two weeks’ observations and follow the
similar steps in WB to get the inflation factor. We plan to explore
these possibilities in future work.

2. WB’s experiments showed that an 8-member ETKF en-
semble was not large enough to resolve geographical fluctua-
tions in observation density, while their 16-member ensemble
was large enough to resolve very large-scale fluctuations in ob-
servational density. The ETKF ensemble outperformed breeding
system in WB’s experiment. The key differences that make the
results in this paper differ from those of WB can be attributed
to (a) our observation system is very different from WB’s as we
summarized in the introduction; (b) sixteen members were used
in their lower resolution system. We had only 10 members for
our system with higher resolution; (c) the inflation scheme may

not work well due to the large variations of observations in both
space and time.

3. Only the so-called conventional data from the NCEP op-
erational data assimilation system have been used. To include
satellite data, more work is needed.

4. Ensemble Transform Kalman Filter analysis error esti-
mates assume that the background error covariance matrix used
in data assimilation is identical to the ensemble covariance ma-
trix. This is not strictly correct. Since we did not use ETKF
to carry out data assimilation, the analysis perturbations gener-
ated by ETKF are not centred around the analysis field gen-
erated by ETKF, but the analysis operationally produced by
the NCEP 3-D-Var system. The ETKF analysis estimate is not
fully consistent with the NCEP operational 3-D-Var analysis.
NCEP’s 3-D-Var operational data assimilation system (Parrish
and Derber, 1992) assumes quasi-isotropic covariances of a
different nature to those generated by a 10-member ETKF
ensemble. It is expected that the background covariance ma-
trix produced by the NMC method is more isotropic than that
generated by the ensembles. This is particularly true for our
small number of ensemble members. There are two ways of
avoiding this inconsistency between the error covariance model
assumed by the ETKF and that assumed by the data assimila-
tion scheme. First, one could use ensemble-based data assim-
ilation. As described in the introduction, ETKF, EAKF, EnSR
and LEKF all are ensemble-based Kalman filters. A major inter-
comparison project has been initiated recently at NCEP in co-
operation with the people who derived and formulated these
filters at the NOAA Climate Diagnostics Center (NOAA CDC),
University of Maryland and National Center for Atmospheric
Research (NCAR). This project is supported by THORPEX (see
http://box.mmm.ucar.edu/uswrp). The goal of this project is to
compare the performance of each of these ensemble-based data
assimilation schemes in an environment with real operational
(and more sophisticated) models and data. The results will be
compared with the benchmark NCEP operational data assimila-
tion system. A second possibility would be to get the analysis
uncertainty information from 3-D/4-D Var and feed it into the
ensemble forecast system. We plan to explore this with respect
to breeding techniques in the future. Orthogonalization and sim-
plex transformations can be used to restrain initial perturbation
variance. The results will be compared with 40-member ETKF.
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