Results from the ATREC-03 and Winter Storm Reconnaissance (WSR) 2004 programs

Lacey Holland Zoltan Toth Jon Moskaitis Sharan Majumdar Craig H. Bishop Roy Smith

SAIC at EMC/NCEP EMC/NCEP/NWS MIT Univ. of Miami NRL NCO/NCEP/NWS

Acknowledgments

- NWS field offices, HPC/NCEP and SDMs
- NOAA G-IV and the USAFR C-130 flight crews
- CARCAH (John Pavone)
- Jack Woollen EMC
- Russ Treadon EMC
- Mark Iredell EMC
- Istvan Szunyogh Univ. of Maryland
- + others who have contributed!

About the Winter Storm Reconnaissance (WSR) Program

- Took place 21 Jan 17 March 2004
- Dropwinsonde observations taken over the NE Pacific by aircraft operated by NOAA's Aircraft Operations Center (G-IV) and the US Air Force Reserve (C-130s).
- Observations are adaptive
 - collected only prior to significant winter weather events of interest
 - in areas that influence the forecast the most.
- Previous forecasts improved in 60-80% of targeted cases (in past studies)
- Operational since January 2001
- 36 flights, around 720 dropsondes this winter

Evaluation methodology

- Compare analysis and forecast cycles from the GFS at T126L28 resolution including all operationally available data (includes dropsondes); the other excludes only dropsonde data - to evaluate the data impact
- Verify against observations over the preselected area of interest (verification region)
 - Rawinsonde observations for surface pressure, 1000-250 hPa temperature, and other fields
 - Rain gauge data for precipitation

Results for Surface Pressure

Of the cases: 21 improved 1 neutral 13 degraded

Breakdown for cases

Variable	# cases improved	# cases neutral	#cases degraded
<i>Surface</i> pressure	21	1	13
Temperature	21	1	13
Vector Wind	24	1	10
Humidity	21	0	14

Individual Case Comparison

OBS. DATE	P,	T,	V,	OV	ERALL	
2004012900	1	1	1	1		
2004020100	-1	1	1	1		
2004020200	1	1	1	1		
2004020500	1	-1	1	1		
2004020500	0	1	1	1		
2004020800	-1	1	1	1		
2004020900	1	1	1	1		
2004021000	-1	1	1	1		
2004021300	1	1	-1	1		
2004021500	1	1	1	1		
2004021600	1	1	0	1		
2004021700	1	1	1	1		
2004021800	1	-1	1	1		
2004022100	-1	0	-1	-1		
2004022200	1	1	1	1		
2004022300	1	-1	-1	-1		
2004022400	1	1	1	1		
2004022500	1	-1	1	1		
2004022600	1	1	1	1		
2004022600	-1	-1	1	-1		
2004022600	1	1	-1	1		
2004022700	1	1	1	1		
2004022800	-1	-1	1	-1		
2004030200	1	1	1	1		
2004030600	-1	-1	-1	-1		
2004030600	-1	-1	-1	-1		
2004030600	-1	-1	_1	-1		

2004030700	-1	-1	1	-1	
2004030700	-1	-1	-1	-1	
2004031200	1	1	1	1	
2004031200	1	1	1	1	
2004031300	1	1	1	1	
2004031300	-1	-1	-1	-1	
2004031500	-1	-1	-1	-1	
2004031700	1	1	1	1	

- 1 denotes positive effect
- 0 denotes neutral effect
- -1 denotes negative effect

OVERALL EFFECT

24 OVERALL POSITIVE CASES.0 OVERALL NEUTRAL CASES.11 OVERALL NEGATIVE CASES.

69% improved 31% degraded

Future Work

- Examine the effect of dropsondes on precipitation
- Compute average improvement / degradation over WSR domain (NE Pacific, U.S.)
- Improve targeting method by reducing spurious or misleading guidance due to statistical sampling problems
- Evaluate NCEP Atlantic Winter Storm results
- Evaluate WSR using ensembles for WSR05
- Increase resolution and ensemble membership to 40 members for WSR05
- Increased duration of program for WSR05-06?

ATReC Prelim. Results

Breakdown for cases

Variable	# cases improved	# cases neutral	#cases degraded
<i>Surface</i> pressure	35	2	10
Temperature	42	0	5
Vector Wind	37	0	10
Humidity	43	0	4

Individual Case Comparison

CASE P, T, V, Q, OVERALL

1	1	1	1	1	1	25	1	1	1	1	1	
2	-1	1	-1	-1	-1	26	-1	1	1	1	1	
3	1	1	1	1	1	27	1	1	1	1	1	
4	1	1	-1	1	1	28	1	1	1	1	1	
5	1	1	1	1	1	29	1	1	1	1	1	
6	-1	1	1	1	1	30	1	1	1	1	1	
7	1	1	1	1	1	31	1	-1	1	1	1	
8	-1	1	1	1	1	32	1	-1	1	-1	0	
9	1	1	1	1	1	33	1	1	1	1	1	
10	1	1	1	1	1	34	1	1	1	1	1	
11	1	1	1	1	1	35	-1	1	-1	1	0	
12	1	1	1	1	1	36	-1	1	1	1	1	
13	1	1	1	1	1	37	-1	1	-1	1	0	
14	1	1	1	1	1	38	1	1	1	1	1	
15	1	1	-1	1	1	39	0	1	-1	1	1	
16	1	1	1	1	1	40	1	1	-1	1	1	
17	1	-1	1	1	1	41	-1	1	1	-1	0	
18	-1	-1	-1	1	-1	42	1	1	1	1	1	
19	1	1	1	1	1	43	1	1	1	1	1	
20	1	1	1	1	1	44	-1	1	-1	1	0	
21	1	-1	-1	1	0	45	1	1	1	1	1	
22	1	1	1	1	1	46	1	1	1	1	1	
23	1	1	1	1	1	47	1	1	1	1	1	
24	0	1	1	-1	1							

- 1 denotes positive effect
- 0 denotes neutral effect
- -1 denotes negative effect