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GOAL OF DATA ASSIMILATION

Provide smooth/continuous estimate of 3-D (4-D) state of natural systems

e Two distinct applications

— “Analysis of record” — to assess what happened
* Utmost fidelity to reality is wanted
— Eliminate influence of systematic model error
— Diagnostic, climatological, etc applications
— Success measured as fit to independent, unbiased data

— Initial condition for forecasting — to predict what will happen
» Best forecast is sought

— No need to match observations if that hurts forecast
» Use only data to the extent it is representative in the modeling system
» Do not correct for systematic model errors?

— Success measured in forecast skill (ie, forecast fit to observed data)

 Need different DA approaches for the two different applications?

» Will focus on forecast initial condition applications



LINK BETWEEN DA & ENSEMBLE FORECASTING

* INITIAL CONDITION

— Weighted average of info from 2 sources:
e Observational data
* Numerical forecast
— Weights depend on errors
* Need uncertainty information
* Link with ensemble forecasting «-------- 1

— Must reflect uncertainty in initial condition

e ENSEMBLE INITIAL PERTURBATIONS: i
e Link with data assimilation «---------__ _:

e ENSEMBLE FORECASTS

— Must reflect forecast uncertainty due to errors in
* Initial conditions
* Model formulation



LINK BETWEEN DA & ENSEMBLE FORECASTING - 2

WHAT CAN/SHOULD DA DELIVER TO ENSEMBLES?

— Uncertainty in initial condition
e Variance
e Covariance?

WHAT CAN/SHOULD ENSEMBLES DELIVER TO DA?

— Uncertainty in background forecast field
* Variance
e Covariance

HOW DA & EF SHOULD BE CONFIGURED TO WORK
SYMBIOTICALLY?



LINK BETWEEN DA & ENSEMBLE FORECASTING - 3

GOAL

* Provide best possible ensemble forecast
— Success measured by skill of ensemble forecasts

APPROACH
e Combine DA & EF systems

— Data assimilation:
* How to combine info from observations and background forecasts?

— Ensemble forecasting:
* How to estimate forecast uncertainty

— What is the role of each system for particular applications?

— What is the best way to ensure consistency between DA & EF?

e Comments/examples for some applications with current data coverage for atmosphere



THE ROLE OF DA IN THE ERA OF REMOTE SENSING

Remote sensing provides high density 3-4D data coverage

— Number of satellite, radar, etc observations increases exponentially
e Smooth, quasi-continuous fields

— Some gaps in space/time/variables still remain
— No adequate data on smaller scales?

* Role of DA schemes diminishes? ooo0. Ty Upper Alr Observation Count
— More data => 5
— Less need for using forecast information =>  10.000-
— Relatively less work for DA :
— Less to be gained now than 20 yrs ago
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* Increased academic/user interest in DA
— Sitill justified
* Improvements can bring significant gains in
forecast skill
e Challenges remain
— How to assimilate data on smaller scales? o1] | |
— Adaptive “thinning” of data 1990 2000 2010

Year
— 4DVAR and/or ensemble-based methods? 7
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FORECASTING IN A CHAOTIC ENVIRONMENT
DESCRIBE FORECAST UNCERTAINTY ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY

1) The atmosphere is a deterministic system AND
has at least one direction in which perturbations grow

2) Initial state (and model) has error in it ===

Chaotic system + Initial error =(Loss of) Predictability
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FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model

* |s not best estimate for future evolution of system
*Except if constrained by data in 4DVAR

* Does not contain all attainable forecast information
*Case-dependent variations in forecast uncertainty missed
*4DVAR does not come with an ensemble generation algorithm

» Can be combined with past verification statistics to form probabilistic forecast
* Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
* |nitialize with probability distribution function (pdf) at analysis time
* Dynamical forecast of pdf based on conservation of probability values
* Prohibitively expensive -
* Very high dimensional problem (state space x probability space)
» Separate integration for each lead time
* Closure problems when simplified solution sought



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH — ENSEMBLE FORECASTING

 IDEA.: Sample sources of forecast error
e Generate initial ensemble perturbations
* Represent model related uncertainty

* PRACTICE: Run multiple NWP model integrations
* Advantage of perfect parallelization
e Use lower spatial resolution if short on resources

e USAGE: Construct forecast pdf based on finite sample
* Ready to be used in real world applications
» Verification of forecasts
e Statistical post-processing (remove bias in 1st, 2"d higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY
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SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT’S KNOWN - FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION

THEORETICAL UNDERSTANDING - THE MORE ADVANCED A SCHEME IS
(e. g., 4ADVAR, Ensemble Kalman Filter)

* The lower the overall error level is
* The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES -
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
* Statistical approach (dynamically growing errors neglected)
» Selected estimated statistical properties of analysis error reproduced
e Baumhefner et al — Spatial distribution; wave-number spectra
* ECMWF — Implicite constraint with use of Total Energy norm
* Dynamical approach — Breeding cycle (NCEP)
e Cycling of errors captured
 Estimates subspace of dynamically fastest growing errors in analysis
e Stochastic-dynamic approach — Perturbed Observations method (MSC)
* Perturb all observations (given their uncertainty)
* Run multiple analysis cycles

: . : 11
 Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES — SEVERAL OPEN QUESTIONS

RANDOM SAMPLING — Perturbed observations method (MSC)
— Represents all potential error patterns with realistic amplitude

— Small subspace of growing errors is well represented

— Potential problems:
* Much larger subspace of non-growing errors poorly sampled,
* Yet represented with realistic amplitudes

SAMPLE GROWING ANALYSIS ERRORS — Breeding (NCEP)

— Represents dynamically growing analysis errors
— Ignores non-growing component of error

— Potential problems:
* May not provide “wide enough” sample of growing perturbations
o Statistical consistency violated due to directed sampling? Forecast consequences?

SAMPLE FASTEST GROWING FORECAST ERRORS - SVs (ECMWF)
— Represents forecast errors that would grow fastest in linear sense
— Perturbations are optimized for maximum forecast error growth

— Potential problems:
* Need to optimize for each forecast application (or for none)?
* Linear approximation used
* Very expensive
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ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

DATA ASSIM: Growing errors due to cycling through NWP forecasts
BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

— Sample subspace of most rapidly growing analysis errors
» Extension of linear concept of Lyapunov Vectors into nonlinear environment
* Fastest growing nonlinear perturbations
* Not optimized for future growth —
— Norm independent
— Is non-modal behavior important?

Differences

ANALYSIS CYCLE

BREEDING CYCLE.
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LYAPUNOV, SINGULAR, AND BRED VECTORS
LYAPUNOV VECTORS (LLV):

Linear perturbation evolution
Fast growth

Sustainable

Norm independent
Spectrum of LLVs

SINGULAR VECTORS (SV):

Linear perturbation evolution
Fastest growth

Transitional (optimized)
Norm dependent

Spectrum of SVs

BRED VECTORS (BV):

Nonlinear perturbation evolution
Fast growth

Sustainable

Norm independent

Can orthogonalize (Boffeta et al)

LAMCATL AMPLIFICATION FACTOR At)

T1III L18 MRF experlm ents Ezunyugh et al, 19‘

Local Lyapunov Vector {LLV)
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PERTURBATION EVOLUTION

PERTURBATION GROWTH
— Due to effect of instabilities
— Linked with atmospheric phenomena (e.g, frontal system)
LIFE CYCLE OF PERTURBATIONS
— Associated with phenomena
— Nonlinear interactions limit perturbation growth
— Eg, convective instabilities grow fast but are limited by availability of moisture etc

LINEAR DESCRIPTION

— May be valid at beginning stage only
— If linear models used, need to reflect nonlinear effects at given perturb. amplitude

BREEDING
— Full nonlinear description

— Range of typical perturbation 1
ﬁ ONLY FREE PARAMETER: Range of perturbation ampl itudes
amplitudes is only free parameter =
E: Baroclinic
= Instakilities
E _____________________ Analysis error level
E Convectian

L

Tima
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NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2004) SYSTEM
e 10 members out to 16 days
] ) T254 T170 T126 T62
e 4 times daily — 1s4 142~ L28 128
e T126 outto 7.5 days AYS 0 1 2 3
e Model error not yet represented & —=——

4 5 6 7 0§ 9@ i oIr 12 I3 M4 I Is
I [ N

TODZ
5 pairs

e PLANS

* |Initial perturbations oFs
— Rescale bred vectors via ET e
— Perturb surface conditions

* Model errors s
— Push members apart 2
— Multiple physics (combinations)

— Change model to reflect
uncertainties 8z

 Post-processing 5 pes
— Multi-center ensembles
— Calibrate 1st & 2 moment of pdf
— Multi-modal behavior?

5 Pairs

3FS
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ADVANTAGES OF USING ENSEMBLE (VS. CONTROL) FCSTS
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RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:
What are the typical variations in foreseeable forecast uncertainty?
What variations in predictability can the ensemble resolve?

METHOD:
Ensemble mode value to distinguish high/low predictability cases
Stratify cases according to ensemble mode value —

Use 10-15% of cases when ensemble Is highest/loewest

DATA:
NCEP 500 hPa NH extratropical ensemble fcsts for March—May 1997
14 perturbed fcsts and high resolution control

VERIFICATION:
Hit rate for ensemble mode and hires control fcst
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS
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LOW PR. AVERAGE PRED. HIGH PREDICTABILITY
12-36 HRS DAYS3-5 DAYS 1013

THE UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

HIT RATES FOR 1-DAY FCSTS
CAN BE AS LOW AS 36%, OR AS HIGH AS 92%

10-15% OF THE TIME A 12-DAY FCST CAN BE AS GOOD, OR A
1-DAY FCST CAN BE AS POOR AS AN AVERAGE 4-DAY FCAST

1-2% OF ALL DAYS THE 12-DAY FCST CAN BE MADE WITH MORE
CONFIDENCE THAN THE 1-DAY FCST

AVERAGE HIT RATE FOR EXTENDED-RANGE FCSTS IS LOW —
VALUE IS IN KNOWING WHEN FCST IS RELIABLE 19



Relative megsure of predictability (ceolorg )
for ensemble mean farecast {contoursz) of 500 hPo height
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COMPARISON OF ECMWF, MSC, AND NCEP ENSEMBLES

MSC ECMWE NCEP
Pj (model uncertainty) | 2 models + Diff. Ph. Par.| Pj=P0 (single model) Pj=P0 (single model)
dPj (random mod err) |2 models + Diff. Ph. Par. | dPj=rj*Pj (stoch. physics) dPj=0

Al

2 models

Aj=A0 (single model)

Aj=A0 (single model)

0j (obs error)

Random perturbations

ej (initial uncertainty)

ej from Anal. Cycles

ej=e0+dej(SV)

ej=e0+dej(BV)

hor-res HRES control

T170(d0-7)>T126(d7-16)

TL149

hor-res control TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
hor-res pert members TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
vertical levels (c&pf) 23 and 41, 28 40 28

top of the model 10hPa 10hPa 3hPa

perturbed members 16 50 10

forecast length 10 days 10 days 16 days

daily frequency 00 UTC 12 UTC (00 UTC exp) 00 and 12 UTC

operational impl.

February 1998

December 1992

December 1992
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PATTERN ANOMALY CORRELATION (PAC)
METHOD:Compute standard PAC for

Ensemble mean & Control fcsts
EVALUATION
Higher control score due to better:
* Analysis + NWP model
Higher ensemble mean score due to
e Analysis, NWP model, AND
Ensemble techniques
RESULTS
CONTROL

ECMWEF best throughout
— Good analysis/model
ENSEMBLE VS. CONTROL

0.8

o
o

=
m

=
=1}

=
-

Anomaly correlation scores
=

Poorer (old Ol) ensemble analy

[

CANADIAN poorer than hires cont .|

NH 500 mb Height
Average For O0QZO1DEC2003 — QOUZZ9F

wave 1-20 gsmm

dot—contral sclid—10 ensembles mean

0
[ ]

NCEP performs well compared to
control

ENSEMBLE

ECMWEF best throughout
— Good analysis/model?

o

Despite lack of model perturbations

4
Forecast days

G g

Y. Zhu et al.
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PERTURBATION VS. ERROR
CORRELATION ANALYSIS (PECA) .,

METHOD: Compute correlation between
ens perturbtns and error in control fcst for ™

— Individual members 5 o4
— Optimal combination of members % ,
— Each ensemble 2"
— Various areas, all lead time ool ]
EVALUATION: Large correlation indicates EEET,F
ens captures error in control forecast ‘”l ..... cMS |
— Caveat — errors defined by analysis ° ® cad fims () "
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* Benefit of breeding (best estimate initial 8 /'/' -
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* Lyapunov convergence I NCEP ]
* Nonlinear saturation ol ECMWF
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EXPLAINED ERROR VARIANCE AS
A FUNCTION OF ENSEMBLE SIZE

METHOD: Compute correlation between

06} -~
ens perturbtns and error in control fcst for

— Individual members 5
— Optimal combination of members :
— Each ensemble
— Various areas, all lead time
EVALUATION: Large correlation indicates
ens captures error in control forecast
— Caveat — errors defined by analysis
RESULTS:
— SPATIAL SCALES -

— Global/hemispheric scales — No
saturation seen up to 50

— Continental scales — Gains level off,
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SUMMARY OF 3-WAY INTERCOMPARISON RESULTS
Results depend on time period 420 RA:TD PROBABILITY SCORE
CONTROL FORECAST oo | \\

Yns5.
=

g

 ECMWEF best overall control forecast z°« | Ny
— Best analysis/forecast system EDZE N
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Dﬂﬂ | 2 3 4 5 B T 8 9 10

ENSEMBLE FORECAST SYSTEM Frarked probabillty skil seors for De-
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e Difficult to separate effect of analysis/model quality

e ECMWEF best overall performance ﬂﬁzii [
+ NCEP S /

= | T /'J Fi
— Days 1-3 - Very good (best for PECA) Sec A7
e Value of breeding? Egg ~ =

— Beyond day 3 — Poorer performance Eze ——| NEER
* Lack of model perturbations 013
0 10 20 20 40 50 B0 70 80 90 100
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EXISTING/PROPOSED APPROACHES
FIRST GENERATION INITIAL PERTURBATION TECHNIQUES

PERTURBED
OBSERVATIONS

(MSC, Canada)

BREEDING with
Regional
Rescaling

(NCEP, USA)

SINGULAR
VECTORS with
Total Energy

(ECMWF)

ESTIMATION Realistic through Fastest growing No explicit estimate,
sample, case subspace, case not flow dependent
dependent patterns | dependent patterns
& amplitudes

SAMPLING Random for all Random in Directed, dynamically
errors, incl. non- subspace of fastest | fastest growing in
growing, potentially | growing errors; future
hurting short-range | Some dependence
performance among perts.

CONSISTENCY Very good; quality | Time-constant Poor, potentially

BETWEEN ENS & | of DA lagging variance due to hurting short-range

DA SYSTEMS behind 3DVAR? use of fixed mask | performance
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EXISTING/PROPOSED APPROACHES - 2

SECOND GENERATION INITIAL PERTURBATION TECHNIQUES

ETKF, perts ET/BREEDING SINGULAR
influenced by with Analysis VECTORS with
fcsts and Error Variance Hessian norm
observed data Estimate from DA

ESTIMATION Fast growing Fastest growing Case dependent
subspace, case subspace, case variance,
dependent patterns | dependent patterns | climatologically
& amplitudes & amplitudes fixed covariance

SAMPLING Orthogonal in Orthogonal in Directed,
subspace of analysis covariance | dynamically fastest
observations norm growing in future

CONSISTENCY Very good; quality | Good;, Error Climatologically

BETWEEN ENS & | of DA lagging 4D- variance: DA=>ens; | consistent

DA SYSTEMS VAR? Error covariance:

Ens=>DA
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COMPARISON OF DIFFERENT METHODS

GRADUAL CONVERGENCE OF METHODS?

ETKF with no observation perturbation = Breeding with
orthogonalization and rescaling consistent with varying
observational network

COMMON CONCEPT:

Perturbations cycled dynamically through use of nonlinear integrations

Bred Vectors (Toth & Kalnay 1993) = Nonlinear Lyapunov Vectors
(Boffetta et al 1998)

Evolved SV's constrained by analysis error covariance (Hessian
SVs) ~ Bred perturbations

COMMON CONCEPT:

With realistic initial constraint, SV dynamics ~ Lyapunov dynamics?
Explore SVs in subspace of ensemble forecasts — Bishop, etc



MOTIVATION FOR EXPERIMENTS
TWO OJECTIVES for ensemble generation:
Best quality ensemble forecasts
Primary objective, performance measure
Ensemble as consistent with data assimilation system as possible
Secondary objective, to facilitate use of ensemble info in DA

CONSISTENCY can be achieved by:
Development & use of ensemble-based DA system
Through THORPEX project, NCEP is collaborating with 4-5 groups on this
Coupling existing DA (3/4DVAR) with ensemble generation scheme
Goal of present study

INTEREST of study:
As long as ensemble-based DA cannot outperform other 3/4DVAR
Modify and couple existing DA and ensemble systems

Use cheap ensemble generation scheme, since full consistency is
unreachable
Simple initial perturbation scheme driven by analysis error variance from DA
3/4DVAR driven by flow dependent forecast error covariance from ensemble



DESCRIPTION OF 4 METHODS TESTED

BREEDING with regional rescaling (Toth & Kalnay 1997)

Simple scheme to dynamically recycle perturbations
Variance constrained statistically by fixed analysis error estimate “mask”
Limitations: No orthogonalization; fixed analysis variance estimate used

ETKF (Bishop et al. 2004, Wang & Bishop 2003) — used as perturbation
generator (not DA)

Dynamical recycling as breeding, with orthogonalization in obs space
Variance constrained by distribution & error variance of observations
Constraint does not work well with only 10 ensemble members
Built on ETKF DA assumptions => NOT consistent with 3/4ADVAR

Ensemble Transform (ET) (Bishop & Toth 1999)

Dynamical recycling as breeding, with orthogonalization
Variance constrained statistically by fixed analysis error estimate “mask”
Constraint does not work well with only 10 ensemble members

ET plus rescaling = Breeding with orthogonalization, (Wei et al. 2004)
As ET, except variance constrained statistically by fixed analysis error estimate



EXPERIMENTS

Time period
Jan 15 - Feb 15 2003

Data Assimilation
NCEP SSI (3D-VAR)

Model
NCEP GFS model, T126L28

Ensemble
2x5 or 10 members, no model perturbations

Evaluation
7 measures, need to add probabilistic forecast performance



Initial energy spread  Rescaling factor distribution
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Geopotential height (mb)
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SUMMARY OF RESULTS

RMSE, PAC of ensemble mean forecast — Most important
ET+Rescaling and Breeding are best, ET worse, ETKF worst
Perts and Fcst error correlation (PECA) — Important for DA
ET+Rescaling best, Breeding second
Explained variance (scatterplots) — Important for DA
ET best
Variance distribution (climatological, geographically)
Breeding, ET+Rescaling reasonable
Growth rate
ET+Rescaling best? (not all runs had same initial variance...)
Effective degrees of freedom out of 5 members
Minimal effect of orthogonalization
Breeding (no orthogonalization) =4.6
ET (built-in orthogonalization) =4.7
Time consistency of perturbations (PAC between fcst vs. analysis perts)
Important for hydrologic, ocean wave, etc ensemble forcing applications
Excellent for all schemes, ET highest (0.999, breeding “lowest”, 0.988)
New and very promising result for ET & ETKF
OVERALL hits out of 7
ET+Rescaling 4
ET 3
Breeding 2



DISCUSSION

All tests in context of 5-10 perturbations
Will test with 80 members

Plan to experimentally exchange members with NRL
Will have total of 160 members

Need to develop procedure to derive from SSI 3DVAR

ET+Rescaling looks promising

Extension of breeding concept with orthogonalization
JOB OF ENSEMBLE: CAPTURE THE DYNAMICS OF THE SYSTEM

Orthogonalization appears to help breeding
Cheap procedure, also used in targeting

If ensemble-based DA cannot beat 3/4DVAR

Initial ens cloud need to be repositioned to center on 3/4DVAR analysis
No need for sophisticated ens-based DA algorithm for generating initial

perts?
Good EPS ﬁ Good DA



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE / REPRESENTATION OF

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
e Closure/truncation errors related to:
e Spatial resolution
* Time step
* Type of physical processes explicitly resolved

e Parameterization scheme chosen
eStructure of scheme
*Choice of parameters

*Geographical domain resolved
eBoundary condition related uncertainty (Coupling)

NOTES:
e Two main (initial cond. vs. model) sources of forecast errors hard to separate =>
* Very little information is available on model related errors
* Tendency in past to attribute all forecast errors to model problems
Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc
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WHAT HAPPENS IF MODEL ERRORS ARE IGNORED?

Y. Zhu
NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment
All members shifted statistically Perturbation growth lags error growth

Talagrand Distribution (NH 500mb 7)
for 0OZ0TJUNZO02-00731AUG2002
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The impact of using a second model at MSC

The warm bias was reduced substantially and
the U-shape disappeared by combining

the two ensembles into the

relative frequency of analysis

Talagrand diagrams for 500 hPA, northern extratropics

Talagrand diagrams for 500 hPA. northern extratropics
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1

CURRENT METHODS
1) Change structure of model (use different convective schemes, etc, MSC)
*  Perturbation growth not affected?
e Biases of different model versions cancel out in ensemble mean?

Spread
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Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS -2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

* Modest increase in perturbation growth for tropics

e Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH

Spread ROC Area
a) 7
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Buizza Oper vs. Stochastic perturbations 45



Spread

MODEL UNCERTAIMTIES IM ENSEMBLE FREDICTION

850 hPa Temp

NH

AREA

10

Buizza

Tropics

ROC Area

R BUIFZA. M. MILLER and T- N. PALMER
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Oper vs. Stochastic perturbations
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RESULTS FROM COMBINED USE OF RAS & SAS

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES
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RAS SUB-ENSEMBLES COVER SAME

elow zero

Percentoge obove/b

RESULTS FROM COMBINED USE OF RAS & SAS

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE
ON FORECASTS EXCEPT PRECIP

Rank histogram comparing distributions
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS &

SUBSPACE
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for NH 500 mb Helght Talagrand Distribution
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500 hPa height NH extratrop. RMS error for
RAS, SAS, and NAS (no convection)
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STOCHASTIC PERTURBATIONS - PLANS

AREA OF ACTIVE RESEARCH
ECMWEF operational (Buizza et al, 1999), A random numbe (sampled from a
uniform distribution) multiplied to the parameterized tendency

=  ECMWEF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic
Backscatterused to determine the perterbation

. Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive
stochastic forcing

METHOD UNDER DEVELOPMENT (EMC, sponsored by OGP)

e Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS — Add to each perturbed member:
= Difference between single high & low-res forecasts (after scaling and filtering)
= Perturbation based on the differences among the ensemble members at previous
step in integration
 Use global or localized perturbation approach
 Random or guided selection of members (e.g., use difference between
most similar members)

TO BE TESTED
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SH 500 mb Geopotential Height
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS -3

CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
. Are flow dependent variations in uncertainty captured?
. Can statistical post-processing replicate use of various methods?

NEED NEW
* MORE COMPREHENSIVE AND
e THEORETICALLY APPEALING

APPROACH 51



NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
e Truncation in spatial/temporal resolution —
* Need to represent stochastic effect of unresolved scales
* Add parameterized random noise
* Truncation in physical processes resolved
* Need to represent uncertainty due to choice of parameterization schemes
» Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WiLL NEVER Gco AwaAy
IN ENSEMBLE ERA,
NWP MODELING PARADIGM NEEDS TO CHANGE

OLD NEW
GOAL 18t Moment Probability distribution
MEASURE RMS error Probabilistic scores
VARIANCE Ignored / reduced Emphasized

NWP MODEL  Search for best configuration  Represent uncertainty



NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

ITIS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL
FORECAST

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED
Resolution (time and space truncation)
Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -
Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS

Case dependent errors can be captured and corrected
53



WILL NEW APPROACH ADD VALUE?

WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?
WILL IT GIVE CASE-DEPENDENT ESTIMATES
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF
MODEL-RELATED UNCERTAINTY?

NH 500 mb Height
Average For QUZDTJULZUDY — DOZ3TJULZO001

EMS errors

"0 | g 3 L] 5 13 T H 2 10 | g 13 Il 15
Forecast daye

SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS

100

ool SN | — SMLLL_UNCEFITAIN L
——— LARGE UNCERTAIN

80 | L--- MRF (AVERAGE UNCERTAINTY)

704 | I I

=
39 B BEEER NN
30/
\\
20 T e | N —
10 ==

0% 24 48 72 06 120144 168 192 216 240 964 288 312 336 360
LEAD TIME (hours)

LOW PR. AVERAGE PRED. HIGH PREDICTABILITY
12-36 HRS DAYS3-5 DAYS 10-13

UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

Relative megsure of predictability (celors?__} .
for ensemble mean forecast Fcontours) of &S00 hPo height

ini: 200Q102700 valid: 2000102300 Trel 24 heurs

L]

e TN
L
L]

LR A

alf
41
JaH s
i

ssn il

I
mF

Frobabity (%) B 18 92 9 38 4 B mx 7o
Maamure of pradickasly (X~ % W 75

Relative megsure of predictability (colors% )
for ensemble meaon forecast contours') of 500 hPa height

inl: 20001027C0 valid: 2300110400 fost: 192 hours

Frobablitty {%] 7 10 10 11 12 12 14 15 22 25

Wacmurn of pradickably (%) |



SUMMARY

GOALS OF DATA ASSIMILATION
- Record past - Initialize forecasts

LINKS BETWEEN DA & ENSEMBLE FORECASTING

— Ensemble describes forecast uncertainty due to dynamics
— DA combines (ensemble) forecast and observed data

e DAISSUES IN ERA OF SATELLITES
— More data — Less need to analyze — Challenges remain

e FORECASTING IN A CHAOTIC ENVIRONMENT
— Need to monitor case dependent variations in forecast uncertainty

e ESTIMATING & SAMPLING INITIAL ERRORS

— Bred vectors explain more forecast error variance than other operatni
schemes

— ET (ensemble-based DA) scheme(s) offers extension of breeding

e ESTIMATING & SAMPLING MODEL RELATED ERRORS
— No universal solution, major challenge for coming years
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