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GOAL OF DATA ASSIMILATION
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Provide smooth/continuous estimate of 3-D (4-D) state of natural systems

• Two distinct applications
– “Analysis of record” – to assess what happened

• Utmost fidelity to reality is wanted
– Eliminate influence of systematic model error
– Diagnostic, climatological, etc applications

– Success measured as fit to independent, unbiased data

– Initial condition for forecasting – to predict what will happen
• Best forecast is sought

– No need to match observations if that hurts forecast
» Use only data to the extent it is representative in the modeling system
» Do not correct for systematic model errors?

– Success measured in forecast skill (ie, forecast fit to observed data)

• Need different DA approaches for the two different applications?

• Will focus on forecast initial condition applications



LINK BETWEEN DA & ENSEMBLE FORECASTING
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• INITIAL CONDITION
– Weighted average of info from 2 sources:

• Observational data
• Numerical forecast

– Weights depend on errors
• Need uncertainty information
• Link with ensemble forecasting

• ENSEMBLE INITIAL PERTURBATIONS:
– Must reflect uncertainty in initial condition

• Link with data assimilation

• ENSEMBLE FORECASTS
– Must reflect forecast uncertainty due to errors in

• Initial conditions
• Model formulation



LINK BETWEEN DA & ENSEMBLE FORECASTING - 2
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• WHAT CAN/SHOULD DA DELIVER TO ENSEMBLES?
– Uncertainty in initial condition

• Variance
• Covariance?

• WHAT CAN/SHOULD ENSEMBLES DELIVER TO DA?
– Uncertainty in background forecast field

• Variance
• Covariance

• HOW DA & EF SHOULD BE CONFIGURED TO WORK 
SYMBIOTICALLY?



LINK BETWEEN DA & ENSEMBLE FORECASTING - 3
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GOAL 
• Provide best possible ensemble forecast

– Success measured by skill of ensemble forecasts

APPROACH
• Combine DA & EF systems

– Data assimilation:
• How to combine info from observations and background forecasts?

– Ensemble forecasting:
• How to estimate forecast uncertainty

– What is the role of each system for particular applications?

– What is the best way to ensure consistency between DA & EF?

• Comments/examples for some applications with current data coverage for atmosphere



THE ROLE OF DA IN THE ERA OF REMOTE SENSING
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Remote sensing provides high density 3-4D data coverage
– Number of satellite, radar, etc observations increases exponentially

• Smooth, quasi-continuous fields

– Some gaps in space/time/variables still remain
– No adequate data on smaller scales?

• Role of DA schemes diminishes?
– More data => 
– Less need for using forecast information =>
– Relatively less work for DA

– Less to be gained now than 20 yrs ago

• Increased academic/user interest in DA
– Still justified

• Improvements can bring significant gains in 
forecast skill

• Challenges remain

– How to assimilate data on smaller scales?
– Adaptive “thinning” of data

– 4DVAR and/or ensemble-based methods?



FORECASTING IN A CHAOTIC ENVIRONMENT
DESCRIBE FORECAST UNCERTAINTY ARISING DUE TO CHAOS
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Buizza 2002



FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model
• Is not best estimate for future evolution of system

•Except if constrained by data in 4DVAR 

• Does not contain all attainable forecast information
•Case-dependent variations in forecast uncertainty missed
•4DVAR does not come with an ensemble generation algorithm

• Can be combined with past verification statistics to form probabilistic forecast
• Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
• Initialize with probability distribution function (pdf) at analysis time
• Dynamical forecast of pdf based on conservation of probability values
• Prohibitively expensive -

• Very high dimensional problem (state space x probability space)
• Separate integration for each lead time
• Closure problems when simplified solution sought
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FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH – ENSEMBLE FORECASTING

• IDEA: Sample sources of forecast error
• Generate initial ensemble perturbations

• Represent model related uncertainty

• PRACTICE: Run multiple NWP model integrations
• Advantage of perfect parallelization
• Use lower spatial resolution if short on resources 

• USAGE: Construct forecast pdf based on finite sample
• Ready to be used in real world applications
• Verification of forecasts
• Statistical post-processing (remove bias in 1st, 2nd, higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY 10



SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT’S KNOWN – FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION
THEORETICAL UNDERSTANDING – THE MORE ADVANCED A SCHEME IS 

(e. g., 4DVAR, Ensemble Kalman Filter)
• The lower the overall error level is
• The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES –
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
• Statistical approach (dynamically growing errors neglected)

• Selected estimated statistical properties of analysis error reproduced

• Baumhefner et al – Spatial distribution; wave-number spectra
• ECMWF – Implicite constraint with use of Total Energy norm

• Dynamical approach – Breeding cycle (NCEP)

• Cycling of errors captured
• Estimates subspace of dynamically fastest growing errors in analysis 

• Stochastic-dynamic approach – Perturbed Observations method (MSC)

• Perturb all observations (given their uncertainty)
• Run multiple analysis cycles
• Captures full space (growing + non-growing) of analysis errors
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SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES – SEVERAL OPEN QUESTIONS

• RANDOM SAMPLING – Perturbed observations method (MSC)
– Represents all potential error patterns with realistic amplitude

– Small subspace of growing errors is well represented
– Potential problems:

• Much larger subspace of non-growing errors poorly sampled,
• Yet represented with realistic amplitudes

• SAMPLE GROWING ANALYSIS ERRORS – Breeding (NCEP)
– Represents dynamically growing analysis errors
– Ignores non-growing component of error
– Potential problems:

• May not provide “wide enough” sample of growing perturbations
• Statistical consistency violated due to directed sampling? Forecast consequences?

• SAMPLE FASTEST GROWING FORECAST ERRORS – SVs (ECMWF)
– Represents forecast errors that would grow fastest in linear sense
– Perturbations are optimized for maximum forecast error growth
– Potential problems:

• Need to optimize for each forecast application (or for none)?
• Linear approximation used
• Very expensive 12



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

• DATA ASSIM: Growing errors due to cycling through NWP forecasts
• BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

– Sample subspace of most rapidly growing analysis errors
• Extension of linear concept of Lyapunov Vectors into nonlinear environment

• Fastest growing nonlinear perturbations
• Not optimized for future growth –

– Norm independent
– Is non-modal behavior important?

13



LYAPUNOV, SINGULAR, AND BRED VECTORS
• LYAPUNOV VECTORS (LLV):

– Linear perturbation evolution
– Fast growth
– Sustainable

– Norm independent
– Spectrum of LLVs

• SINGULAR VECTORS (SV):
– Linear perturbation evolution
– Fastest growth
– Transitional (optimized)

– Norm dependent
– Spectrum of SVs

• BRED VECTORS (BV):
– Nonlinear perturbation evolution

– Fast growth
– Sustainable
– Norm independent

– Can orthogonalize (Boffeta et al)
14



PERTURBATION EVOLUTION
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• PERTURBATION GROWTH
– Due to effect of instabilities
– Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS
– Associated with phenomena
– Nonlinear interactions limit perturbation growth
– Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION
– May be valid at beginning stage only
– If linear models used, need to reflect nonlinear effects at given perturb. amplitude

• BREEDING
– Full nonlinear description
– Range of typical perturbation 

amplitudes is only free parameter



NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2004) SYSTEM
• 10 members out to 16 days
• 4 times daily
• T126 out to 7.5 days
• Model error not yet represented

• PLANS
• Initial perturbations

– Rescale bred vectors via ET
– Perturb surface conditions

• Model errors
– Push members apart
– Multiple physics (combinations)
– Change model to reflect 

uncertainties

• Post-processing
– Multi-center ensembles
– Calibrate 1st & 2nd moment of pdf
– Multi-modal behavior?
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COMPARISON OF ECMWF, MSC, AND NCEP ENSEMBLES

MSC ECMWF NCEP
Pj (model uncertainty) 2 models + Diff. Ph. Par. Pj=P0 (single model) Pj=P0 (single model)
dPj (random mod err) 2 models + Diff. Ph. Par. dPj=rj*Pj (stoch. physics) dPj=0
Aj 2 models Aj=A0 (single model) Aj=A0 (single model)

oj (obs error) Random perturbations - -
ej (initial uncertainty) ej  from Anal. Cycles ej=e0+dej(SV) ej=e0+dej(BV)

hor-res HRES control - - T170(d0-7)>T126(d7-16)
hor-res control TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
hor-res pert members TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
vertical levels (c&pf) 23 and 41, 28 40 28
top of the model 10hPa 10hPa 3hPa
perturbed members 16 50 10
forecast length 10 days 10 days 16 days
daily frequency 00 UTC 12 UTC (00 UTC exp) 00 and 12 UTC

operational impl. February 1998 December 1992 December 1992

23



PATTERN ANOMALY CORRELATION (PAC)
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METHOD:Compute standard PAC for
• Ensemble mean & Control fcsts

EVALUATION
Higher control score due to better:

• Analysis + NWP model
Higher ensemble mean score due to:

• Analysis, NWP model, AND
• Ensemble techniques

RESULTS
CONTROL
• ECMWF best throughout

– Good analysis/model

ENSEMBLE VS. CONTROL
• CANADIAN poorer than hires control

• Poorer (old OI) ensemble analysis
• NCEP performs well compared to 

control 
• Despite lack of model perturbations

ENSEMBLE
• ECMWF best throughout

– Good analysis/model?

Y. Zhu et al.
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PERTURBATION VS. ERROR 
CORRELATION ANALYSIS (PECA)

M. Wei

METHOD: Compute correlation between 
ens perturbtns and error in control fcst for

– Individual members
– Optimal combination of members

– Each ensemble 
– Various areas, all lead time

EVALUATION: Large correlation indicates 
ens captures error in control forecast

– Caveat – errors defined by analysis

RESULTS:
– Canadian best on large scales

• Benefit of model diversity?

– ECMWF gains most from combinations
• Benefit of orthogonalization?

– NCEP best on small scale, short term
• Benefit of breeding (best estimate initial 

error)?

– PECA increases with lead time
• Lyapunov convergence
• Nonlinear saturation

– Higher values on small scales
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EXPLAINED ERROR VARIANCE AS 
A FUNCTION OF ENSEMBLE SIZE

METHOD: Compute correlation between 
ens perturbtns and error in control fcst for

– Individual members
– Optimal combination of members

– Each ensemble 
– Various areas, all lead time

EVALUATION: Large correlation indicates 
ens captures error in control forecast

– Caveat – errors defined by analysis

RESULTS:
– SPATIAL SCALES –

– Global/hemispheric scales – No 
saturation seen up to 50 

– Continental scales – Gains level off, 
especially at longer lead

– LEAD TIME –
– Very little gain beyond 30 members at longer 

ranges

M. Wei
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SUMMARY OF 3-WAY INTERCOMPARISON RESULTS
Results depend on time period
CONTROL FORECAST
• ECMWF best overall control forecast

– Best analysis/forecast system

ENSEMBLE FORECAST SYSTEM
• Difficult to separate effect of analysis/model quality
• ECMWF best overall performance
• NCEP

– Days 1-3 - Very good (best for PECA)
• Value of breeding?

– Beyond day 3 – Poorer performance
• Lack of model perturbations

• CANADIAN
– Days 6-10 – Better than NCEP

• Value of model diversity?



EXISTING/PROPOSED APPROACHES
FIRST GENERATION INITIAL PERTURBATION TECHNIQUES

PERTURBED 
OBSERVATIONS
(MSC, Canada)

BREEDING with 
Regional 
Rescaling
(NCEP, USA)

SINGULAR 
VECTORS with 
Total Energy
(ECMWF)

ESTIMATION Realistic through 
sample, case 
dependent patterns 
& amplitudes

Fastest growing 
subspace, case 
dependent patterns

No explicit estimate, 
not flow dependent

SAMPLING Random for all 
errors, incl. non-
growing, potentially 
hurting short-range 
performance 

Random in 
subspace of fastest 
growing errors; 
Some dependence 
among perts.

Directed, dynamically 
fastest growing in 
future

CONSISTENCY 
BETWEEN ENS & 
DA SYSTEMS

Very good; quality 
of DA lagging 
behind 3DVAR?

Time-constant 
variance due to 
use of fixed mask

Poor, potentially 
hurting short-range 
performance
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EXISTING/PROPOSED APPROACHES - 2

SECOND GENERATION INITIAL PERTURBATION TECHNIQUES

ETKF, perts
influenced by 
fcsts and 
observed data

ET/BREEDING 
with Analysis 
Error Variance 
Estimate from DA

SINGULAR 
VECTORS with 
Hessian norm

ESTIMATION Fast growing 
subspace, case 
dependent patterns 
& amplitudes

Fastest growing 
subspace, case 
dependent patterns 
& amplitudes

Case dependent 
variance, 
climatologically 
fixed covariance 

SAMPLING Orthogonal  in 
subspace of 
observations

Orthogonal in 
analysis covariance

norm

Directed, 
dynamically fastest 
growing in future

CONSISTENCY 
BETWEEN ENS & 
DA SYSTEMS

Very good; quality 
of DA lagging 4D-
VAR?

Good; Error 
variance: DA=>ens; 
Error covariance: 
Ens=>DA

Climatologically 
consistent

29



COMPARISON OF DIFFERENT METHODS
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GRADUAL CONVERGENCE OF METHODS?
• ETKF with no observation perturbation = Breeding with 

orthogonalization and rescaling consistent with varying 
observational network

• COMMON CONCEPT:
– Perturbations cycled dynamically through use of nonlinear integrations
– Bred Vectors (Toth & Kalnay 1993) = Nonlinear Lyapunov Vectors 

(Boffetta et al 1998)

• Evolved SVs constrained by analysis error covariance (Hessian 
SVs) ~ Bred perturbations

• COMMON CONCEPT:
– With realistic initial constraint, SV dynamics ~ Lyapunov dynamics?
– Explore SVs in subspace of ensemble forecasts – Bishop,  etc
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MOTIVATION FOR EXPERIMENTS
TWO OJECTIVES for ensemble generation:

1) Best quality ensemble forecasts
• Primary objective, performance measure

2) Ensemble as consistent with data assimilation system as possible
• Secondary objective, to facilitate use of ensemble info in DA

CONSISTENCY can be achieved by:

a) Development & use of ensemble-based DA system
• Through THORPEX project, NCEP is collaborating with 4-5 groups on this

b) Coupling existing DA (3/4DVAR) with ensemble generation scheme
• Goal of present study

INTEREST of study:

• As long as ensemble-based DA cannot outperform other 3/4DVAR
• Modify and couple existing DA and ensemble systems

• Use cheap ensemble generation scheme, since full consistency is 
unreachable
• Simple initial perturbation scheme driven by analysis error variance from DA

• 3/4DVAR driven by flow dependent forecast error covariance from ensemble



DESCRIPTION OF 4 METHODS TESTED
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• BREEDING with regional rescaling (Toth & Kalnay 1997)
– Simple scheme to dynamically recycle perturbations

• Variance constrained statistically by fixed analysis error estimate “mask”
– Limitations: No orthogonalization; fixed analysis variance estimate used

• ETKF (Bishop et al. 2004, Wang & Bishop 2003) – used as perturbation 
generator (not DA)
– Dynamical recycling as breeding, with orthogonalization in obs space

• Variance constrained by distribution & error variance of observations
– Constraint does not work well with only 10 ensemble members

• Built on ETKF DA assumptions => NOT consistent with 3/4DVAR

• Ensemble Transform (ET) (Bishop & Toth 1999)
– Dynamical recycling as breeding, with orthogonalization

• Variance constrained statistically by fixed analysis error estimate “mask”
– Constraint does not work well with only 10 ensemble members

• ET plus rescaling = Breeding with orthogonalization, (Wei et al. 2004)
– As ET, except variance constrained statistically by fixed analysis error estimate



EXPERIMENTS
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• Time period
– Jan 15 – Feb 15 2003

• Data Assimilation 
– NCEP SSI (3D-VAR)

• Model
– NCEP GFS model, T126L28

• Ensemble
– 2x5 or 10 members, no model perturbations

• Evaluation
– 7 measures, need to add probabilistic forecast performance
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Initial energy spread      Rescaling factor distribution   

ET

ETKF

Breeding

ET+rescaling
M. Wei et al.
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Amp Factor

Effective Dim Correlation

M. Wei et al.
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Variance

M. Wei

PECA



AC

RMS error

M. Wei et al. 37



SUMMARY OF RESULTS
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• RMSE, PAC of ensemble mean forecast – Most important
– ET+Rescaling and Breeding are best, ET worse, ETKF worst

• Perts and Fcst error correlation (PECA) – Important for DA
– ET+Rescaling best, Breeding second

• Explained variance (scatterplots) – Important for DA
– ET best

• Variance distribution (climatological, geographically)
– Breeding, ET+Rescaling reasonable

• Growth rate
– ET+Rescaling best? (not all runs had same initial variance…)

• Effective degrees of freedom out of 5 members
– Minimal effect of orthogonalization

• Breeding (no orthogonalization) =4.6
• ET (built-in orthogonalization) =4.7

• Time consistency of perturbations (PAC between fcst vs. analysis perts)
– Important for hydrologic, ocean wave, etc ensemble forcing applications
– Excellent for all schemes, ET highest (0.999, breeding “lowest”, 0.988)

• New and very promising result for ET & ETKF

• OVERALL hits out of 7
– ET+Rescaling 4
– ET 3
– Breeding 2



DISCUSSION
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• All tests in context of 5-10 perturbations
– Will test with 80 members
– Plan to experimentally exchange members with NRL

• Will have total of 160 members 

• 4-dim time-dependent estimate of analysis error variance
– Need to develop procedure to derive from SSI 3DVAR

• ET+Rescaling looks promising
– Extension of breeding concept with orthogonalization

• JOB OF ENSEMBLE: CAPTURE THE DYNAMICS OF THE SYSTEM

– Orthogonalization appears to help breeding
– Cheap procedure, also used in targeting

• If ensemble-based DA cannot beat 3/4DVAR
– Initial ens cloud need to be repositioned to center on 3/4DVAR analysis
– No need for sophisticated ens-based DA algorithm for generating initial 

perts?

Good EPS Good DA



SOURCES OF FORECAST ERRORS 
IMPERFECT KNOWLEDGE / REPRESENTATION OF  

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
• Closure/truncation errors related to: 

• Spatial resolution

• Time step
• Type of physical processes explicitly resolved
• Parameterization scheme chosen

•Structure of scheme
•Choice of parameters

•Geographical domain resolved
•Boundary condition related uncertainty (Coupling)

NOTES:
• Two main (initial cond. vs. model) sources of forecast errors hard to separate =>
• Very little information is available on model related errors 

• Tendency in past to attribute all forecast errors to model problems 
Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc
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WHAT HAPPENS IF MODEL ERRORS ARE IGNORED? 

NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment

All members shifted statistically Perturbation growth lags error growth

Y. Zhu



The impact of using a second model at MSC
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The warm bias was reduced substantially and 
the U-shape disappeared by combining 
the two ensembles into the 16-SEF/GEM 
ensemble.

8-SEF 8-GEM

16-SEF/GEM

P. Houtekamer
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1
CURRENT METHODS

1) Change structure of model (use different convective schemes, etc, MSC)
• Perturbation growth not affected?
• Biases of different model versions cancel out in ensemble mean?

Spread

Oper: 3 model versions
Para: More model diversity

Based on Houtekamer
J. Du



Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity

Spread RMS error

44
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

• Modest increase in perturbation growth for tropics

• Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH
ROC AreaSpread

Summer

Winter

Oper vs. Stochastic perturbationsBuizza



850 hPa Temp

Spread ROC Area

NH

Tropics

Summer

Winter

Buizza
Oper vs. Stochastic perturbations
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Precipitation Forecast Scores Day 3
SAS, RAS, & Combination

RESULTS FROM COMBINED USE OF RAS & SAS

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES
D. Hou

500 hPa height RMS error, NH extratr.
SAS, RAS, & Combination
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RESULTS FROM COMBINED USE OF RAS & SAS

Rank histogram comparing distributions 
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS & 

RAS SUB-ENSEMBLES COVER SAME 
SUBSPACE

500 hPa height NH extratrop. RMS error for 
RAS, SAS, and NAS (no convection)

NO DIFFERENCE WHETHER 
CONVECTIVE SCHEME IS USED OR NOT

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE 
ON FORECASTS EXCEPT PRECIP

D. Hou



STOCHASTIC PERTURBATIONS - PLANS

AREA OF ACTIVE RESEARCH
ECMWF operational (Buizza et al, 1999), A random  numbe (sampled from a 
uniform distribution) multiplied to the parameterized tendency
ECMWF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic 
Backscatterused to determine the perterbation
Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive 
stochastic forcing

METHOD UNDER DEVELOPMENT (EMC, sponsored by OGP)
● Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS – Add to each perturbed member:
Difference between single high & low-res forecasts (after scaling and filtering)
Perturbation based on the differences among the ensemble members at previous 

step in integration
• Use global or localized perturbation approach
• Random or guided selection of members (e.g., use difference between 

most similar members)
TO BE TESTED
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Perturbations added during integration
Control

D. Hou



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 3
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed

Difficult to maintain
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

Small scales perturbed

If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed

• Are flow dependent variations in uncertainty captured?
• Can statistical post-processing replicate use of various methods?

NEED NEW
• MORE COMPREHENSIVE AND
• THEORETICALLY APPEALING 

APPROACH
51



NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
• Truncation in spatial/temporal resolution –

• Need to represent stochastic effect of unresolved scales

• Add parameterized random noise
• Truncation in physical processes resolved

• Need to represent uncertainty due to choice of parameterization schemes

• Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WILL NEVER GO AWAY

IN ENSEMBLE ERA, 

NWP MODELING PARADIGM NEEDS TO CHANGE

GOAL
MEASURE
VARIANCE
NWP MODEL

OLD
1st Moment
RMS error
Ignored / reduced
Search for best configuration

NEW
Probability distribution
Probabilistic scores
Emphasized
Represent uncertainty

52



NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

IT IS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL

FORECAST 

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED 

Resolution (time and space truncation)

Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -

Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS
Case dependent errors can be captured and corrected

53
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WILL NEW APPROACH ADD VALUE?
WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?

WILL IT GIVE CASE-DEPENDENT ESTIMATES 
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF

MODEL-RELATED UNCERTAINTY?



SUMMARY

55

GOALS OF DATA ASSIMILATION
- Record past - Initialize forecasts

• LINKS BETWEEN DA & ENSEMBLE FORECASTING
– Ensemble describes forecast uncertainty due to dynamics
– DA combines (ensemble) forecast and observed data

• DA ISSUES IN ERA OF SATELLITES
– More data – Less need to analyze – Challenges remain

• FORECASTING IN A CHAOTIC ENVIRONMENT 
– Need to monitor case dependent variations in forecast uncertainty

• ESTIMATING & SAMPLING INITIAL ERRORS
– Bred vectors explain more forecast error variance than other operatnl

schemes
– ET (ensemble-based DA) scheme(s) offers extension of breeding

• ESTIMATING & SAMPLING MODEL RELATED ERRORS
– No universal solution, major challenge for coming years
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