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Abstract:   The initial perturbations used for the operational global ensemble prediction system of the National Centers for Environmental Prediction (NCEP) are generated through the breeding method with a regional rescaling mechanism. Limitations of the system include the use of a climatologically fixed estimate of the analysis error variance and the lack of an orthogonalization in the breeding procedure. In order to ameliorate these shortcomings  We compare the initial perturbations generated by the Ensemble Transform Kalman Filter(ETKF), Ensemble Transform (ET) and ET with rescaling methods. The experiments were carried out in operational environment as NCEP global ensemble forecast system with information on the actual distribution and error characteristics of real-time observations. The perturbations generated by 4 methods are studied in detail and compared with the current NCEP operational ensemble forecast system. 
1. Introduction 
  Ensemble forecasts start from a set of different states that are sampled from a  probability density function which is approximated using a finite sample of initial perturbations. However, how to best generate these initial perturbations for an ensemble forecasting system is still a research issue.    
   The first generation initial perturbation techniques  include:  singular vectors (SVs) used at the European Center for Medium-Range Weather Forecasts (ECMWF). SVs are used to identify the directions of fastest forecast error growth for a finite time period (Molteni et al. 1996); bred vectors (BVs) used to sample amplifying analysis errors through breeding cycles have been used at  the National Centers for Environmental Prediction (NCEP).  Generation of BVs are similar to data assimilation cycles (Toth and Kalnay 1993; 1997). However, both SVs and BVs cannot accurately represent the true uncertainties in analysis as a good ensemble forecast system expects. Initial perturbations in both ensemble systems are not consistent with the data assimilation systems that generate the analysis fields. A comparison of performance between the ECMWF and NCEP ensemble forecast systems was described in in Wei and Toth (2003). 
    Another major method in the first generation is the perturbed observation (PO) approach developed at the Meteorological Service of Canada (MSC) (Houtekamer et al. 1996). The PO approach generates initial conditions by assimilating randomly perturbed observations using different models in a number of independent cycles. The initial perturbations generated by the PO method are more representative of analysis uncertainties in comparison with SVs and BVs. However, the data assimilation quality from ensemble based Kalman fitler is still lagging behind 3-D Var and 4-D Var. A comprehensive summary of current methodologies and performance of the three ensemble forecast  

 systems from ECMWF, MSC and NCEP can be found  

   in Buizza et al. (2005)

    In this paper, we compare various methods that may be classified as second generation initial perturbation techniques, namely ETKF, ET, ET with breeding and pure breeding. Singular vectors with Hessian norm can also be classified as a second generation method. The ETKF and ET methods put forward by Bishop et al. (2001) and  Bishop and Toth (1999) respectively were initially used for the adaptive observation studies.  Later Wang and Bishop (2003) showed how ETKF could be used to generate ensemble perturbations in an idealized observation framework. It was further extended to operational environment with NCEP real-time observations by Wei et al. (2005).  
    A common feature of the second generation techniques is that the initial perturbations are more consistent with the data assimilation systems.  This is the case for ETKF based ensemble. However, the quality of data assimilation from ETKF is still lagging behind NCEP operational 3D-VAR system. The ensemble cloud has to be adjusted to center around the analysis field generated by 3D-VAR system.  To overcome this drawback, we adopt the ET technique  to generate initial perturbations. 
    Section 2 provides a brief basic description of the ET formulations for initial perturbations. Section 3 presents the major results from ET comparisons with the NCEP operational bred perturbation-based ensemble system. Discussion and conclusions are given in Section 4. 
2. Basic formulation
  The initial perturbations of the NCEP global ensemble forecast system are generated by a breeding method.  This method is well established, widely used and well documented. The operational implementation at NCEP can be found in Toth and Kalnay (1993, 1997).   The ETKF formulation (Bishop et al. 2001) is based on the application of a Kalman filter, with the forecast and analysis covariance matrices being represented by k forecast and k analysis perturbations. More details can be found in Bishop et al. (2001), Wang and Bishop (2003) and Wang et al. (2004). Results of ETKF with NCEP real-time observations can be found in  Wei et al. (2005). The ET method was formulated in Bishop and Toth (1999) primarily for target observation studies.  In this paper, we adopt this technique for ensemble forecasting.  Let
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where the n dimensional state vectors 
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 ensemble forecast and analysis perturbations, respectively. In our experiments, 
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.  Although the forecast perturbations are, by definition, centered about the ensemble mean, i.e. 
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, the analysis perturbations produced by the ET defined above are not centered around the analysis (
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 will be used as our initial analysis perturbations for the next cycle forecasts. 

      The experimental setup in this paper is the same as in Wei et al. 2005.  Our experiments run from Dec 31, 2002 to Feb. 17, 2003, however, our study will only focus on the 32-day period from 01/15/2003 to 2/15/2003.  There are 10 ensemble members in all the systems. The observations for ETKF are from  the NCEP global data assimilation system which also produces the analysis field for all experiments. All ensemble systems are cycled every 6 hours in accordance with the NCEP data assimilation system in which new observations are assimilated in consecutive 6-hour time windows centered at 00, 06, 12 and 18 UTC.  The model used is the NCEP operational forecast model (GFS) at T126L28.
3. Results 
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Fig. 1.  Averaged correlation over 10 members between forecast and analysis perturbations as a function of time for Breeding(thick black), ETKF (thin) black, ET (red) and ET/rescaling (green). The mean correlation over all levels, correlations at levels 1000mb, 500mb and 2mb are shown in solid, dotted, dashed and dash-dotted lines respectively.
    First, let’s look at the correlations between individual forecast and analysis perturbations. A high correlation between forecast and analysis perturbations indicates more time continuity between perturbations at different cycles.  Fig. 1 shows that all four ensembles generate analysis perturbations that have higher correlations with the associated forecast perturbations, though ET based ensemble produces highest correlation values (red). Correlations from ETKF and ET with regional rescaling  are similar,  but below that of pure ET and higher than that from breeding.  The reasons for this high correlation in  ETKF ensemble is due to the simplex transformation which was discussed in Wei et al. 2005, while ET including simplex transformation produces analysis perturbations that have even higher correlations than that in ETKF. The results of ET (red) and ET with regional rescaling (green) show that the regional rescaling reduces the correlation between analysis and forecast perturbations.

 [image: image29.wmf]
Fig. 2. Vertically averaged global distribution of energy spread of analysis perturbations (left) and the ratios of the analysis and forecast spread (right), for  ET (top), ETKF (2nd row), breeding (3rd row) and ET/rescaling (bottom row).
    The energy spreads of analysis perturbations are shown in Fig. 2 on the left panels from top to bottom for ET, ETKF, breeding and ET/rescaling respectively.   The ratios of analysis and forecast spread are shown on the right panels for the respective ensembles.  The results show that pure ET transformation does not show the spread distribution as the mask breeding, although it produces the analysis perturbations that have highest correlations with their forecast and perturbations.  The spread distribution from ET is more similar to that of ETKF ensemble. 
   Since the transformation does not produce  the spread distribution as the initial variance, we impose the regional rescaling as in breeding after the ET transformation. The spread distribution and the ratios between analysis and forecast spreads are shown in bottom of Fig.2. Both distributions from ET with regional rescaling are similar to those of breeding.  The advantages of this technique are that the analysis perturbations are more orthogonal, have higher correlations with the forecast perturbations. Other advantages are explored in the following, such as growth rates, ability to explain forecast errors.  
       Shown in Fig.3 is the effective degrees of freedom (EDF) of subspace spanned by 5 perturbations from all four systems.  Overall, the perturbations from ET span a higher dimensional subspace at nearly all levels (red).  When the regional rescaling is imposed on the ET, the EDF is compromised slightly (green). Both ETKF and breeding perturbations have similar EDF at most levels.    
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Fig.3.  The effective degrees of freedom of subspace spanned by 5 temperature perturbations in 2-d grid point space at each pressure level (solid: analysis; dotted: forecast) from ETKF (thick), breeding (thin), ET(red), ET/rescaling ensembles.

     Fig. 4 shows the PECA values in the N. Hemisphere for ETKF (thick), breeding(thin), ET(red) and ET/rescaling(green). PECA (Wei and Toth 2003) describes the patter correlations between the forecast errors and individual perturbations or (optimally combined perturbations).  In general, ET/rescaling and breeding ensembles have higher PECA than ET and ETKF, especially for short lead time.  For longer lead times, ETKF and breeding ensembles have similar PECA values.

  To estimate how much the forecast variance can be explained by the ensemble variances, we use the scattered plots shown in Fig. 5.  Details about this kind of plots can be seen in Wei et al.2005. In terms of this measure, ET ensemble perform best, with ET/rescaling performs lower than ETKF and breeding.  The anomaly  correlations  and RMS errors from the 4 ensemble systems which measure the forecast performances show similar scores for all the systems (not shown), however for a longer lead times  (after 5 days), ET/rescaling and breeding ensembles have slight advantage with ETKF lowest.  

4. Discussion and Conclusions

   In this paper, we have carried out experiments with four ensemble forecast systems based on different techniques for generating initial perturbations: ET, ET with rescaling, ETKF and breeding. Results are presented for a 32-day period using the NCEP operational analysis/ forecast system, and focusing on analysis perturbation characteristics. ET with rescaling looks most promising with best scores in 7 measures. It generates more orthogonal perturbations with initial analysis variances consistent with data assimilation. Another advantage is that ET method is computationally efficient compared with ETKF.
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Fig. 4. The PECA values for ETKF (solid) and breeding(dotted), ET(red) andET/ rescaling (green) ensembles from 5 perturbations only. Shown in thick and thin lines are PECA from 5 optimally combined perturbations and the average PECA from 5 individual perturbations. 

[image: image32.wmf]
Fig. 5. Derived ensemble variance and forecast error variances at all grid points for 500mb temperature, for ET and ETKF (left panel) and breeding and ET/rescaling (right panel) for globe. The average value from each of 320 bins is indicated by solid lines. Dotted lines show the results from 20 bins only. The linear regression line from 320 bins is displayed by a dashed line.   
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