ENSEMBLE METHODS AND TOOLS

Tara L. Jensen, Barbara Brown, John Halley Gotway, Tressa Fowler and Randy Bullock

National Center for Atmospheric Research, Boulder Colorado, USA and Developmental Testbed Center, Boulder Colorado, USA

6th NCEP Ensemble Users Workshop, 25-27 March 2014 • NCWCP, Maryland

OVERVIEW

- Tools
- Methods
- New Research

TOOLS AND METHODS

R STATISTICS

- R ~ the dominant language in the statistical research community.
- R is Open Source and free.
- Runs on most operating systems
- Nearly 2,400 packages contributed.

Some useful packages

- verification
- fields (spatial stats)
- radiosondes
- extRemes
- BMA(Bayesian Model Averaging)
- BMAensemble
- circular
- Rsqlite

Good for point probability forecasts

Struggles with large gridded files

- SpatialVx
- Rgis, spatstat (GIS)
- ncdf (support for netcdf files)
- rgdal (support for grib1 files)
- rNOMADS (support for grib2 files archived by NCEP)
- Rcolorbrewer
- randomForests

MODEL EVALUATION TOOLS (MET)

Developed by the Developmental Testbed Center, Boulder Colorado, USA

MET CAPABILITIES

ENSEMBLE CHARACTERISTICS (ENSEMBLE STAT)

- Rank Histogram
- PIT
- CRPS
- Ignorance Score
- Spread-Skill

PROBABILITY MEASURES (GRID AND POINT STAT)

- Brier Score + Decomposition
- Brier Skill Score
- ROC and Area Under ROC
- Reliability

NEW IN MET: SERIES ANALYSIS TOOL GEOGRAPHIC REPRESENTATION OF SCORES

OBJECT ORIENTED METHOD: MODE

HOW IT WORKS

Developmental Testbed Center

USING MODE ON PROBABILITY FIELDS

MODE FOR DIFFERENT PROBABILITIES – MAY 11, 2013

NWS PoP - Percent chance that rain will occur at any given point in the area.

ENSEMBLE MODE

APPLYING SPATIAL METHODS TO ENSEMBLES

As probabilities: Areas do not

have "shape" of precipitation areas; may "spread" the area

As mean:

Area is not equivalent to any of the underlying ensemble members

EXAMPLE MAY 11, 2013

SPREAD INCREASES WITH TIME

INDIVIDUAL MATCHED OBSERVED OBJECTS

May 2013: 27 Days of Matched Observed/Forecast Pairs

FORECAST AREA

High bias on forecast area.

Sometimes ensemble mean is in middle of attribute distribution and sometimes is it dominated by 1 member

Developmental Testbed Center

9km-std_merge Ensemble Cluster Objects Valid Range: 2013-05-01 15:00:00 to 2013-05-31 15:00:00, Lead Times: 15 hr

Observation Area (grid squares)

WHAT NEXT?

- Now that we have ability to keep track of all member objects paired with observed objects
 - **Rank Histograms** of individual attributes (i.e. area, centroid latitude, longitude, complexity)
 - Distribution of Attributes
 - Individual attributes may be used prognostically
 - Paired Forecast-Observed attributes used diagnostically
 - Summary with Inner Quartile Range
 - Spread-Skill diagrams
 - Diagnostic Analysis
 - How many ensemble means are not matched even though members are indicating the event may occur
 - Evaluation of probability fields using MODE objects in new ways

THANK YOU

- DTC: http://www.dtcenter.org
- MET: http://www.dtcenter.org/met/users
- MET HELP: met_help@ucar.edu
- Email: jensen@ucar.edu

