The R&D Special Fund for Public Welfare Industry (Meteorology) (GYHY201206005), 2012-2014

Research on bias correction techniques of quantitative precipitation forecasts

Huiling Yuan, Kan Dai, Wendong Hu, Li Wei, Xiaoyu Huang, Xiang Su, Jinjie Song, Shoujuan Shu, Sijia Li, and colleagues at CMA/NMC, NUDT, Ningxia Met, and NJU

6th NCEP Ensemble User Workshop, NCEP, Mar 25-27, 2014

Objectives

- Based on operational middle-range NWP products used in CMA, study QPF and its predictability.
- Correct systemic bias and provide calibrated QPF products.
- Objective: accuracy (hit rate, light to heavy rain) increases 3%.

Key issues

- Factors affecting the error of QPF and PQPF
- Identify the bias of weather systems producing precipitation and the objective bias correction
- Calibration of QPF and PQPF (grid products)

TIGGE ensemble predictions, 10 centers

Origin	Owner	Base time	Ensemble number	Resolution	Time step	Date range for precip
ВоМ	Australia	00,12	32+1	1.5 * 1.5	6 to 240 by 6	2007-9-3 -> 2010-07-20
СМА	China	00,12	14+1	0.56 * 0.56	0 to 240 by 6	2007-5-15 -> today
СМС	Canada	00,12	20+1	1.0 * 1.0	6 to 384 by 6	2007-10-3 -> today
CPTEC	Brazil	00,12	14+1	0.94 * 0.94	6 to 360 by 6	2008-2-1 -> today
ECMWF	Europe	00,12	50+1	N200,N128 (-2010.1.26) N320,N160 (2010.1.27-)	0 to 240 by 6 (0-10day) 240 to 360 by 6 (10-15day)	2006-10-1 -> today
JMA	Japan	12	50+1	1.25 * 1.25	0 to 216 by 6	2006-10-1 -> today
КМА	Korea	00,12	23+1	1.25 * 1.25 (-2010.11.30) 0.56 * 0.38 (2011.8.1-)	0 to 252 by 6	2009-12-18 -> 2010.11.30 2011.8.1 -> today
MeteoFrance	France	06,18	34+1	1.5 * 1.5	6 to 72 by 6 (06) 6 to 108 by 6 (18)	2009-12-8 -> today (06) 2007-10-25 -> today (18)
NCEP	USA	00,06,12,18	20+1	1.0 * 1.0	0 to 384 by 6	2007-3-19 -> today
икмо	United Kingdom	00,12	23+1	1.25 * 0.83 (-2010.3.8) 0.83 * 0.56 (2010.3.9-)	0 to 360 by 6	2006-10-1 -> today

Spread-skill relationship

CMA (Song, Yuan, et al. 2011)

Mean Difference (mm/day) CPTEC_1day

Mean Difference (mm/day) NCEP_1day

Mean Difference (mm/day) JMA_1day

-3 -1

-7 -5

2008-2011 summer (JJA), multi model ensemble, mean bias different lead times

1 3 5 7

TRMM 2008-2011 JJA, mean rain

Spread-skill relationship and the CRPSS

Spread-skill

JMA has large spread in the NH Tropics for the day +1 fcsts, and low spread for other lead times

All EPSs suffer from deficiency of ensemble spread except CMC

Time series of spatial correlation

With the upgrade of ECMWF, the difference of skill between ECMWF and CMA increases about 0.1 over 4 years.

Spread/RMSE ratio changes due to model upgrade

CRPSS changes due to model upgrade

Forecast skill of multi-center ensemble

Objective analysis of precipitation systems and bias correction 07/03/2011, ECMWF fcst and obs

Provided by Huang, Xiaoyu

Predictability of precipitation systems

Displacement errors of large precipitation bands: South China

Difference (of longitude or latitude) = EC – OBS

Example: trough

Filter, remove high-frequency wave

Control intensity of filtering

Hu et al. 2013

Obtain a series of nodes

Identify effective nodes

Hu et al. 2013

 $\sqrt{}$

Closed systems

- center
- initial and ending closed zones
- intensity
- location
- speed, direction
- Jet
 - long axis
 - centroid
 - jet stream core
 - area

Products: Trough, ridge, and nodes, high (G) and low (D) centers (Red: trough region, Blue: ridge region, O: possible nodes)

誕 天气系统自动化分析	×
文件 (2) 地图 (2) 系统设置 (3) 动画 (2) 帮助 (2)	
● 打开 井 经纬线 💕 地图 🌮 河流 ● 兰勃托投影 ○ 球面投影	
● 等值线分析 送槽脊线 ◆ 高低中心 《》综合分析 ● 等值线 □ 风间 □ 槽脊点 □ 格点值 □ 格点风 □ 风切 □ 过滤 □ 漂移 ECWMF ▼	r 500Hpa 🔻
🛂 开始 🛛 60 🛇 😂 * 😂 F:\WeatherSyste 🐨 杨有林 - 收件箱 🗢 H:\ 🖬 天气系统自动化 🥻 Delphi 7	🕥 机票-变更申请 🕌 Showsat 💼 🔍 🛃 😨 10:13

Calibration Methods of QPF and PQPF

e.g., MOS, Kalman Filter, Frequency matching, Regression, ANN, rank, Analog, Ingredient based, Bayesian Model Averaging ...

Model output: T639、T213 ensemble、NCEP、ECMWF、JMA and so on

CDF calibration

- **ECMWF** fcsts ($0.5^{\circ} \times 0.5^{\circ}$)
- OBS: gauges
- training: 2013.07-2013.08
- validation: 2013, 9.1-9.26

NCEP CDF decaying

$$\overline{\text{CDF}}_{i}$$
 = (1-W) * $\overline{\text{CDF}}_{i-1}$ + W * CDF_{i}

TS (>0.1mm day⁻¹)

Lead	RAW	CAL
1	0.55	0.58
2	0.54	0.56
3	0.52	0.54
4	0.50	0.51
5	0.48	0.48
6	0.46	0.46
7	0.44	0.43
8	0.40	0.39
9	0.37	0.36

Su and Yuan, 2013

TS (>1.0mm day⁻¹)

Lead	RAW	CAL
1	0.52	0.53
2	0.50	0.51
3	0.47	0.47
4	0.45	0.44
5	0.42	0.41
6	0.39	0.38
7	0.36	0.34
8	0.31	0.30
9	0.28	0.26

TS (>10 mm day⁻¹)

Lead	RAW	CAL
1	0.34	0.32
2	0.32	0.30
3	0.28	0.28
4	0.25	0.23
5	0.24	0.23
6	0.22	0.21
7	0.16	0.16
8	0.13	0.13
9	0.09	0.09

TS (>25 mm day⁻¹)

Lead	RAW	CAL
1	0.15	0.16
2	0.15	0.16
3	0.14	0.15
4	0.13	0.14
5	0.11	0.13
6	0.08	0.10
7	0.04	0.07
8	0.04	0.07
9	0.04	0.06

Linear regression of PQPF

Typhoon cases in Taiwan area

(Chang, Yuan, and Lin 2012, MWR)

Logistic regression

PQPF by Uniform Rank

BMA Calibration

CMA

TRMM 20080626 12UTC h mm/24h

BMA50%CDF, 2008062612, 24h

BMA80%CDF, 2008062612, 24h

BMA90%CDF, 2008062612, 24h

BMA70%CDF, 2008062612, 24h

ensemble mean, 2008062612, 24h

BMA fcst with larger spread, 80%CDF fcst more closes to OBS and improves than EnsMean.

Yang et al. 2013

> BMA is best, much better than EFI and high-reso fcst, especially at mid-range and extended range ➢ EFI is worst Dai et al. 2013

Dai et al. 2013

Challenges

Factors affecting the error of QPF and PQPF

Identify the bias of precipitation systems Objective analysis and auto identification of the bias

Calibration methods

Calibration of QPF and PQPF (grid products) Methods Training period verification / QPE data

