16th Weather Squadron

Fly - Fight - Win

Air Force Weather Ensembles

Evan Kuchera Fine Scale Models and Ensemble 16WS/WXN evan.kuchera@us.af.mil

- Air Force Weather Operational Ensembles
- Probabilistic diagnostics
- Interactive data interrogation
- https://weather.af.mil/confluence/display/AFWWEBSTBT/Ensembles+Main+Page
 - Operational products, configuration information, case studies, etc
 - Password protected—contact me for access info

air force

Goals for operational ensembles

- Reliable, sharp prediction of mission-impact phenomena
- Tailored products: both quick-look AND detailed
- Timely!
- Global Ensemble Prediction Suite (GEPS)
 - 62 members from NCEP, CMC, FNMOC
- Mesoscale Ensemble Prediction Suite (MEPS)
 - 10 members of WRF-ARW with diverse initial conditions and physics
 - 144 hour "global" at ~20 km, 72 hour regional at 4 km
 - MAJCOMs own keys to re-locatable domains

4 km MEPS domains

Green—static; Blue—relocatable (positions subject to change) Each domain runs to 72 hours once per day (CONUS 2X/day)

*(Current as of March 2014)

U.S. AIR FORCE

Physics configurations

Mem	Atmos IC/LBC	Land IC	Snow/ SST IC	LU	Surface	LEVS	LEV2	SW-Rad	LW-Rad	PBL	DSR	Microphysics	Hail	CCN	Cumulus (20 km only)
1	UM	LIS	UM	USGS	NOAH	27	0.990	Dudhia	RRTM	ACM2	GNX	WDM6	1	5E+08	BMJ
2	GFS	LIS	GFS	USGS	NOAH	27	0.995	Dudhia	RRTM	BouLac	DRI	Morrison	1	1E+08	Tiedtke
3	GEM	LIS	GEM	USGS	NOAH	24	0.990	Goddard	Goddard	YSU	GNX	WDM6	0	1E+09	New SAS
4	GEM	UM	GEM	USGS	NOAH	21	0.995	Goddard	Goddard	BouLac	DRI	Morrison	1	1E+09	BMJ
5	UM	UM	UM	USGS	NOAH	21	0.985	CAM	CAM	YSU	GNX	Thompson	N/A	N/A	Tiedtke
6	GFS	LIS	GFS	USGS	PX	24	0.990	Dudhia	RRTM	ACM2	DRI	WDM6	1	1E+08	Tiedtke
7	GEM	UM	GEM	USGS	PX	24	0.985	Dudhia	RRTM	BouLac	GNX	Thompson	N/A	N/A	New SAS
8	GFS	LIS	GFS	USGS	PX	24	0.995	CAM	CAM	ACM2	DRI	Morrison	0	1E+08	BMJ
9	UM	UM	UM	USGS	PX	27	0.985	CAM	CAM	YSU	GNX	WDM6	0	5E+08	BMJ
10	GFS	UM	GFS	USGS	PX	21	0.990	Goddard	Goddard	ACM2	DRI	Thompson	N/A	N/A	New SAS

- No data assimilation, most recently available global model output is interpolated to the domain
- 21-27 vertical levels—does not seem to degrade quality, saves on cost (Aligo, et. al., 2008)

U.S.AIR FORCE

Product Examples

5. Air force

- Purpose of diagnostics: Access data from the model for "algorithmic post-processing" while it is available in memory
 - Reduces I/O load
 - Enables tracking of maxima/minima
 - Enables variable temporal output cadence
 - Given model code parallelization, is generally cheap
- Targeted variables
 - Simulated clouds/satellite and radar
 - Clear and rime aircraft icing
 - Precipitation Type/snowfall
 - Surface visibility (fog/precip/dust)
 - Severe weather (lightning/hail/tornado/winds)
- All diagnostics within community WRF framework

Probabilistic Diagnostics

Algorithms

s. Air force

- Many variables of importance to users are "sub-grid"
- Uncertainties in occurrence/frequency require algorithms to ensure reliable prediction
- Limited ensemble members
 - Only having 10 members means the PDF is poorly sampled even if the ensemble is perfect
- Weibull distribution
 - Three variables to describe:
 - Shape, scale, shift
 - Flexibility to make different distributions (Gaussian-like, exponential, etc)
 - Can put a curve on grid-scale data (i.e. precipitation) and on sub-grid data (i.e. lightning frequency)

Probabilistic Diagnostics

U.S. AIR FORCE

Interactive data

- AF missions and platforms have unique criteria
 - Impractical to pre-stage all possible criteria
 - Need to develop tools to allow users to set their own
- Sophisticated missions need raw data to reason with
 - Example: Precision airdrop program
 - Each model realization of wind profile will lead to a different landing point for a re-supply package dropped from an aircraft
 - Risk assessments can be made given expected errors and times of lower/higher confidence
 - Example: Long-haul flights
 - Optimal flight-level winds; hazard avoidance
 - Potential to save \$2-12 million annually per AFIT MS thesis

Interactive data

AFWEPS Interface Prototype

PEP Bulletins																																									
Point Ensemble Probability Bulletins Select a model 20km MEPS 4km MEPS																																									
Latitude: 36.0000				Lon	gitude:	-98.0000	-98.0000			Submit						NSEMBI	emble Probability																								
REQUESTED LOCATION MODEL BOX INFO 4 km MEPS Mar 07/122				36.0 36.0	/000 lat -98.0000 lor)174 lat -97.9780 lor Fri 7		lon lon	330.0432		2 meters elevation Sat 8								_	Sun 9										Mon 10												
							18 19 20) 21 2	2 23	0Z 01	02 03	04 05 0	6 07 0	8 09 1	10 11	12 13	141	5 16 1	7 18 1	202	1 22 23	0Z (01 02 (03 04	05 06 (07 08 ()9 1 0	11 12	13 14	1510	6171	8 19 3	20 21	22 23	0Z 01	1 02 0	3 04	05 06	07 0	8 09 1	0 11 12
Winds	•	> •	15	kt	▼ in	1 hr	99 99 99	9 96 9	0 77	31 17	54 55	<mark>41</mark> 54 9	2 99 9	9 99 9	99 99	99 99	99 99	99 99	9 99 9	9 98 9	8 94 83	70	39 11	1 0	0 0	0 1	0 0	2 0	0 3	0 0	0 0	0 0	05	12 23	19 2	2	3 13	11 11	10 10	09	4 4 7
Winds	•	> ▼	25	kt	▼ in	1 hr	48 32 21	19 10	0 2	0 0	4 12	<mark>17 19 4</mark>	<mark>12</mark> 64 5	7 56 5	52 51	<mark>47</mark> 56	63 51	<mark>45 3</mark>	6 33 2	796	531	1	00	00	0 0	0 0	00	0 0	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Temperature	•	< •	32	۴F	▼ in	1 hr	0 0 0	0 0	0 0	0 0	0 0	000	00	0 0	1 5	16 40	54 6	7 72 6	<mark>7</mark> 47 29	994	4 1 2	4	12 19 2	20 38	<mark>49</mark> 68 :	83 90 9	94 97	99 99	99 99	79 11	70(0 0	0 0	0 0	0 0	0	4 17	18 18	17 19	9 21 2	<mark>.6 29 33</mark>
Temperature	•	< •	28	۴F	▼ in	1 hr	0 0 0	0 0	0 0	0 0	0 0	0 0 (00	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0	67	10 11	17 20 3	23 33 4	40 44	<mark>47</mark> 53	58 56	20 0	0 (0 0	0 0	0 0	0 0	0	02	2 1	2 2	7) 9 10
Precip	•	> •	0.01	in	▼ in	1 hr	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0 (0 10 (0 0	10 10	10 <mark>3</mark> 2	2 25 4	6 49 20	5 40 4	0 30 30	30	<mark>29</mark> 10	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Precip	•	> ▼	0.01	in	▼ in	6 hr	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 10 1	10 10	20 20	31 45	66 7	9 90 9	92 9	0 78 60	40	40 40 3	30 30	30 30	0 0	0 0	0 0	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Precip	•	> •	0.10	in	▼ in	12 hr	-99-99-9	9 - 99 - 9	99 - 99	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	9 1	7 20 2	9 39 4	9 49 49	49	49 46 4	40 40	40 38	88 30 3	30 19	12 0	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Precip	•	> •	0.25	in	▼ in	12 hr	-99-99-9	9 - 99 - 9	99 - 99	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	13 18	29	30 30 2	29 25	24 20 3	3 8	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Snow	•	> •	0.1	in	▼ in	12 hr	-99-99-9	9 - 99 - 9	99 - 99	0 0	0 0	0 0	0 0 (0 0	0 0	0 0	03	18 24	4 38 3	9 49 4	9 49 49	49	49 49 4	41 39	30 30 3	30 30 3	30 30	30 28	10 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0
Snow	•	> •	1.0	in	▼ in	12 hr	-99-99-9	9 - 99 - 9	99 - 99	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0)79	19 (25 28 2	28 28	28 23 2	20 19	17 8	70	0 0	0 0	0 (0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0 0

- Air Force Weather is executing operational ensemble prediction systems
 - Timely, storm-scale products tailored to mission needs
- Finalizing probabilistic diagnostics
 - Within model code for efficiency, quality, flexibility
 - Improved characterization of certainty
- Interactive data interrogation
 - Provide users the ability to tailor probabilistic data to the mission
 - Improved risk assessment and \$\$\$ saved