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Abstract

We propose a three year project to develop a strategically new forecast process,
which is integrated, adaptive, and user controllable in accordance with the objec-
tives of THORPEX. We will achieve this goal, through further developing our exist-
ing Local Ensemble Kalman Filter (LEKF) data assimilation scheme for the NCEP
GFS and by developing a new adaptive observation technique applicable in the
presence of strong nonlinearities. This system will integrate the sub-components of
weather forecasting by: (1) enhancing the assimilation of weather observations, (2)
generating ensemble initial conditions consistent with the spatio-temporally varying
uncertainty in the analysis, (3) adaptively controlling the collection of observations,
and (4) providing probabilistic forecasts for economic or societal applications. The
adaptive nature of the Kalman Filter and the new observation techniques we are
planning to test would provide a basis for adaptive observation, assimilation, and
application procedures that would vary depending on the case and forecast situ-
ation. The proposed system is ideal for user controllable applications since it is
computationally efficient, largely model independent, and easily portable between
different computational platforms.



1 Introduction
Operational numerical weather prediction systems perform data assimilation by
combining a short-term forecast (background) with observations to create an anal-
ysis. This procedure is a statistical interpolation based on the assumptions that
uncertainties in the background and the observations are normally distributed with
zero expected values and known covariance between the model variables and be-
tween observations. In reality, however, the covariance matrices cannot be directly
computed since the true state of the atmosphere is unknown. Thus the implemen-
tation of a data assimilation system requires the development of statistical models
that can provide estimates of the covariance matrices. The quality of a data as-
similation system is primarily determined by the accuracy of these estimates (e.g.,
Daley, 1991; Kalnay, 2003).

Uncertainties in the background have a large variability in both space and time.
Due to computational constraints, current operational data assimilation systems
cannot take this variability into account. One of the most promising approaches to
obtain a computationally cost efficient estimate of the background covariance ma-
trix is the effort to develop operationally attainable ensemble Kalman filter schemes.
The usefulness of this approach has been demonstrated for both simplified and more
realistic models of the atmosphere (e.g. Houtekamer and Mitchell, 1998; Evensen,
1994; Anderson and Anderson, 2001; Hamill and Snyder, 2000; Whitaker et al.,
2003).

Our proposed LEKF data assimilation system is an ensemble Kalman filter. The
most important differences between our scheme and those proposed in the afore-
mentioned papers is that (1) our scheme updates the analysis concurrently at each
grid point (locally in model space), while the others update the analysis sequentially
at each observational location (locally in observation space); (2) in our scheme the
background covariance information is localized by defining smoothly connected lo-
cal regions in the neigborhood of each grid point, while in the sequential schemes
the background covariance information is localized by the Gaussian filter of Gas-
pari and Cohn (1999) using a prescribed correlation length in the neighborhood of
each observation. We believe that our unique formulation of the ensemble Kalman
filter is advantageous when many observations, especially those with correlated ob-
servational errors, are assimilated:

• The LEKF allows for significantly reducing the dimension of the analysis
problem by using the dynamically most important local directions of the state
space as the basis for the matrix operations. This reduced dimension depends
only on the complexity of the dynamics, i.e., it is independent of the number
of observations. This leads to an efficient filtering of redundant information in
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the observed data, which is present due to an oversampling by the observing
instruments (a typical problem with high resolution remote sensors). In con-
trast, the sequential schemes require statistical techniques (e.g., superobing)
to reduce the number of observations prior to doing the data assimilation.

• While the sequential data assimilation schemes can be extended to the case, in
which the observations have correlated error, their efficiency quickly degrades
as the number of correlated observations increases. This is due to the fact
that all correlated observations have to be assimilated at the same time in
this formulation. Hence the update step, which is a scalar equation for the
case of uncorrelated observations, becomes a matrix equation of ever growing
dimension as the number of correlated observations increases. In our scheme,
the dimension of the matrix equations is fixed and, except for the inversion
of the observational error covariance matrix, it is solely determined by the
complexity of the dynamics.

• Although the computational cost of our scheme increases linearly with the
number of grid points, the computation can be performed concurrently for
each grid point. Thus, the wall clock computational time can be efficiently
reduced in a parallel computational environment.

• We anticipate that a 4-dimensional extension of the algorithm, that has al-
ready been shown to work for a low-order analogue of the atmospheric dy-
namics, can be implemented on the NCEP GFS. We also anticipate that an
efficient direct minimization of the cost function in the low dimensional local
regions is also possible.

A detailed mathematical derivation and discussion of the new scheme can be
found in Ott (2003a,b). Here, we first present an outline of the scheme providing
no more detail than necessary to explain our unique concept of localization and to
propose further enhancements to the system. We also show some results obtained
by an implementation on the T62, 28-level, 2001 version of the full operational
NCEP GFS.

2 Prior Research

2.1 Local vectors
A model state of the atmosphere is given by a vector field x(r, t) where r is two di-
mensional and runs over discrete values rmn (the grid in the physical space used in
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the numerical computations). Typically, the two components of r are the geograph-
ical longitude and latitude, and x at a fixed r is a vector of all relevant physical
state variables of the model (e.g., wind velocity components, temperature, surface
pressure, humidity, etc., at all height levels included in the model). Let u denote the
dimensionality of x(r, t) (at fixed r); e.g., when five independent state variables are
defined at 28 vertical levels, u = 140.

We do our analysis locally in model space. To explain this local procedure,
we first introduce our local coordinate system and the approximations we make to
the local probability distribution of x(r, t). Since all the analysis operations take
place at a fixed time t, we will suppress the t dependence of all vectors and matrices
introduced henceforth.

We introduce at each point local vectors xmn of the information x(rm+m′,n+n′ , t) for
−l ≤ m′, n′ ≤ l. That is, xmn specifies the model atmospheric state within a (2l+1) by
(2l+1) patch of grid points centered at rmn. (This particular shape of the local region
was chosen to keep the notations as simple as possible, but different (e.g., circular)
shape regions and localization in the vertical direction can also be considered.) The
dimensionality of xmn is (2l + 1)2u. The local background error covariance matrix
and most probable state are are denoted by Pb

mn and x̄b
mn, respectively.

We assume that, the rank of the (2l + 1)2u by (2l + 1)2u covariance matrix is
much less than (2l + 1)2u. Let

k = rank(Pb
mn). (1)

Thus Pb
mn has a (2l + 1)2u − k dimensional null space S̄mn and the inverse (Pb

mn)−1

is defined for the component of the vectors (xb
mn − x̄b

mn) lying in the k dimensional
subspace Smn orthogonal to S̄mn

In the data assimilation procedure we describe in this paper, the background
error covariance matrix Pb

mn and the most probable background state x̄b
mn are de-

rived from a k′ + 1 member ensemble of global state field vectors {xb(i)(r, t)}, i =
1, 2, · · · , k′ + 1; k′ ≥ k ≥ 1. The data assimilation algorithm is formulated in a k-
dimensional space Smn defined by the k principal components of the ensemble based
estimate of Pb

mn. The coordinates between the k-dimensional Smn and the (2l + 1)2u
dimensional local regions are changed by a (2l + 1)2u by k matrix, Qmn. We denote
the projection of vectors into Smn and the restriction of matrices to Smn by a super-
scribed circumflex (hat). Thus for a (2l + 1)2u dimensional column vector w, the
vector ŵ is a k dimensional column vector given by

ŵ = QT
mnw. (2)

Let xa
mn be the random variable at the current analysis time t representing the lo-

cal vector after knowledge of the observations and background mean are taken into
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account. For simplicity, we assume that all observations collected for the current
analysis were taken at the same time t. Let yo

mn be the vector of current observations
within the local region, and that the errors are normally distributed with covariance
matrix Rmn. An ideal (i.e., noiseless) measurement is a function of the true atmo-
spheric state. Considering measurements within the local region (m, n), we denote
this functionHmn(·). That is, if the true local state is xa

mn, then the error in the obser-
vation is yo

mn −Hmn(xa
mn). Assuming that the true state is near the mean background

state x̄b
mn, we approximateHmn(xa

mn) by linearizing about x̄b
mn,

Hmn(xa
mn) ≈ Hmn(x̄b

mn) +Hmn∆xa
mn, (3)

where
∆xa

mn = xa
mn − x̄b

mn, (4)

and the matrix Hmn is the Jacobian matrix of partial derivatives of Hmn evaluated
at x̄b

mn. (If there are s scalar observations in the local (2l + 1) by (2l + 1) region at
analysis time t, then ȳo

mn is s dimensional and the rectangular matrix Hmn is s by
(2l + 1)2u). The data assimilation step determines x̄a

mn (the local analysis) and Pa
mn

(the local analysis covariance matrix) by minimizing the quadratic form,

J(∆x̂a
mn) = (∆x̂a

mn)T (P̂b
mn)−1
∆x̂a

mn

+ (Ĥmn∆x̂a
mn +Hmn(x̄b

mn) − yo
mn)T R−1

mn ×

(Ĥmn∆x̂a
mn +Hmn(x̄b

mn) − yo
mn). (5)

Here Ĥmn = HmnQmn maps Smn to the observation space.
For a fixed set of parameters, k, k′, and l, the probability distribution of xa

(i.e., the ensemble xa(i)(r, t) can be estimated by the following serial algorithm (Fig-
ure 2.1):

1. The global analysis field is evolved to the next analysis time, thus obtaining
a new background ensemble of global atmospheric states.

2. The global (in physical space) variables are partitioned to form the local input
variables yo

mn, Rmn, and xb(i)
mn and the (2l + 1)2u × (2l + 1)2u outer product Pb′

mn
is computed for each region.

3. The projection operator Qmn is obtained and the local vectors are projected
onto the k -dimensional subspace.

4. The local analysis covariance matrix is computed as

P̂a
mn = P̂b

mn

[

I + ĤT
mnR−1

mnĤmnP̂b
mn

]−1
. (6)
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vectors
(step 2)

Form local

(step 3)

Project local
vectors in Smn

from t − ∆ to t
Evolve model

Obtain global
ensemble
analysis fields
(step 5)

(step 4)
in Smn

Do analysis

xb(i)(r, t)

x
b(i)
mn(t)

P̂a
mn(t), ˆ̄x

a

mn(t)

xb(i)(r, t + ∆)

xa(i)(r, t − ∆)

(step 6)

xa(i)(r, t) (step 1)

Figure 1: Illustration of the Local Ensemble Kalman Filter scheme as given by the
six steps listed in the text

The local analysis (most probable state)

x̄a
mn = Qmn∆ ˆ̄xa

mn + x̄b
mn, (7)

is obtained from

∆ ˆ̄xa
mn = P̂a

mnĤT
mnR−1

mn

[

yo
mn − Hmn(x̄b

mn)
]

. (8)

and the local analysis ensemble, xa(i)
mn i; i = 1, 2, · · · , k′ + 1, is generated.

5. The k′+1 global fields
{

xa(i)(r, t)
}

are constructed from the k′+1 local analyses
xa(i)

mn , which are given at each point rmn.

6. The procedure is repeated for the next analysis time.

This algorithm was first validated by an implementation on the Lorenz-96 model
(Lorenz, 1996), which mimics the evolution of a scalar meteorological quantity
along a latitude circle. We found that a full (non-localized) Kalman filter required
an increasing number of ensemble members to reach a minimum rms error (about
20% of the observational noise for our experimental design), beyond which the
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analysis could not be reduced. The number of ensemble members needed was about
30, 50, and 80 for the 40, 80, and 120 grid point systems, respectively. The LEKF
reached the same limit at 8 ensemble members independently of the system size
(Ott, 2003a). We also found that the LEKF was able to handle data voids as effi-
ciently as the full Kalman filter, and much more efficiently than a traditional data
assimilation system using a static (constant) background matrix. In a later study
(Ott, 2003b), we demonstrated that the LEKF scheme was robust both to errors in
the Lorenz-96 model and to dynamical noise in the true state evolution.

2.2 Computational Implementation
The data assimilation begins with the construction of a vector containing suitably-
scaled components of the dynamical variables at the grid points. Because we are
not concerned with how they are generated, our algorithms are amenable to object-
oriented programming techniques. The initial implementation, which we have used
in our preliminary feasibility studies, contains a software layer called “Grid Man-
ager” that handles the transport of data from the model grid to the data assimilation
step. Grid Manager provides a consistent interface for the rest of the code. It com-
prises less than a third of the total lines of code, and it is the only portion of the
software that needs to be altered when it is ported to a different model.

As is customary with high-performance modeling of this sort, the software is
written in Fortran 95, which combines most of the necessary data-hiding and data-
abstraction capabilities with simple, clean, high-performance language capabilities
for numerical linear algebra, including parameterized floating-point types and two-
dimensional arrays with column-oriented storage and variable dimensions, which
are lacking in languages like C++. Our software also takes advantage of the code
reuse that is possible in using well-tested, public-domain libraries like LAPACK.

Our system that can be easily adapted to upgraded or new versions of the fore-
cast model, as neither our mathematical theory, nor the computer code we have been
developing, depends on the details of any particular forecast model. This flexibility
is a major advantage of the scheme over traditional 4D-Var schemes that require
the modification of the tangent linear and adjoint model codes, whenever the model
is modified. This is a critical advantage since numerous model upgrades can be
expected during the long time span of THORPEX.

2.3 Results with the NCEP GFS
We carried out idealized data assimilation experiments with the T62 horizontal reso-
lution, 28-level, 2001 version of the operational NCEP GFS. In our experiment, the
“true” state was generated by a 30-day integration of the T62 GFS model, starting
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from the operational NCEP analysis at 0000 UTC on 1 January 2000. The observed
data were generated by adding zero-mean, Gaussian random noise (observational
error) to the true state. The variances of the errors are 1 K for the temperature,
1.1 m/s for the two horizontal components of the wind, and 1 hPa for the surface
pressure.

As we expected, the scheme proved to be highly efficient. The assimilation of
1.5 × 106 simulated observations (wind, temperature, and surface pressure) takes
about 12 minutes of wall-clock time on a Beowulf cluster of fourty 2.8-GHz Intel
Xeon processors, a remarkably fast result for a reduced Kalman filter of this resolu-
tion. This result was achieved with local regions of about 750× 750 km and k = 79
(an 80 member ensemble).

The timing results were obtained by observing all four variables at all grid
points, in order to demonstrate the computational efficiency of our data assimila-
tion system. The real strength of an ensemble Kalman filter, also demonstrated by
our results for the Lorenz-96 model, is that it can efficiently extrapolate information
to unobserved locations. To test the capability of the LEKF scheme to extract in-
formation from a reduced number of observations, we performed data assimilation
experiments by gradually removing observations at random locations. Two exam-
ples of the results are shown in Figures 2 and 3, which demonstrate that the number
of observational location can be reduced to 2000 (about 10% of the original num-
ber of locations) without losing the stability of the scheme and without considerably
degrading the quality of the analyses. We found, as it also can be seen in our exam-
ples, that the analysis error is much smaller than the observational uncertainty for
all variables at almost all atmospheric levels. The only exceptions are the tempera-
ture in the boundary layer and the wind components in the jet layer. These are the
vertical layers, where the two variables have the largest gradient. To eliminate this
problem, we plan to implement a vertical localization on the LEKF. We note that
other teams developing ensemble Kalman filters also found the vertical localization
of the covariances beneficial, but while they use the Gaussian filter of Gaspari and
Cohn, we will use smoothly connected vertical layers in the true spirit of the LEKF.

3 Proposed Research
While our preliminary results with simulated observations are very promising, fur-
ther significant theoretical and experimental research is needed before our method-
ology can be considered for operational implementation.

We are planning to test a number of enhancements to our system as part of the
proposed research. The four most important of these are:

• Combination of the Ensemble Kalman Filter and the 4D-Var data assimilation
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Figure 2: Time evolution of the global rms error in the analysis of the temperature
at the 500 hPa pressure level. The areal average is taken over the entire globe.

Figure 3: Vertical cross section of the rms error in the analysis of the zonal wind
component at the 500 hPa level. The areal average is taken over the 300N-700N
latitude belt.
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approach. We propose to enhance the LEKF in such a way that asynchronous
observations are assimilated at the correct time. This is essentially a 4D-
Var extension of the LEKF, in which the linear model dynamics is inferred
from the ensemble and not from the tangent-linear map, as it is done in a
conventional 4D-Var scheme. Preliminary results with a low-order analogue
of the atmospheric circulation (the 40-variable L96 model) show that this
approach allows data assimilation every several model time steps to perform
essentially as well as the original data assimilation every time step (Sauer et
al., 2003).

• Direct minimization of the cost function. Ensemble Kalman Filters typically
assume that the observational operator (which interpolates the background to
the observational locations) is linear. For remotely-sensed data, however, the
observational operator is often nonlinear. This issue is usually resolved by
first linearizing the observational operator and then using it in the linear for-
mulation of the problem. Our current implementation of the scheme follows
this approach (see Eq. 8), though in our formulation of the Kalman Filter, the
observational operator is allowed to be nonlinear in the cost function (see Eq.
5), and linearization of the operator is needed only to obtain the estimate of
the analysis error covariance matrix (see Eq. 6), which is used for the gener-
ation of analysis ensemble perturbations. This allows for a direct minimiza-
tion of the cost function including nonlinearity in the observational operator,
which is expected to be computationally highly efficient for the small patches
used in the LEKF. This may provide an important computational advantage
over the current operational schemes, which seeks for the minimizer of the
global cost function.

• Development of an additive variance inflation scheme to represent the effects
of model errors on the analysis error covariance matrix in the NCEP GFS. A
propotype of this scheme can be found in Ott (2003a), which was shown to
be very effective in the L96 model, but an implementation on the NCEP GFS
requires intense numerical experimentation.

• Development of an adaptive observation technique that can help improve
forecasts into the medium and long forecast ranges (3-14 days). The main
goal of the operational Winter Storm Reconnaissance (WSR) program is to
improve the short range (1-3-day) prediction of extratropical cyclones. A de-
tailed analysis of the forecast impact of the targeted observations, collected
in the Winter Storm Reconnaissance programs, revealed that the added ob-
servations had an overall positive effect out to 7-day forecast lead time. It
was found that this improvement was mainly due to an improvement in the
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prediction of the slowly varying, large-scale features of the atmospheric cir-
culation (Szunyogh et al. , 2002), a finding also supported by the result of
Miguez-Macho and Paegle (2001). We would like to capitalize on this obser-
vation by using diagnostic tools (e.g., Ensemble-dimension, local energetics)
that can help maximize the beneficial effects of the adaptive observations into
forecast ranges, where the error growth is non-linear. (Our most recent results
on this subject can be found in Oczkowski, Szunyogh and Patil (2003)).

4 Outreach and Education
The University of Maryland Chaos Group has become one of the world’s premier
programs for training researchers in applied dynamical systems. In 1999, our grad-
uate program in nonlinear dynamics was rated first in the country by U. S. News
and World Report (since than nonlinear dynamics programs have not been rated).
Our Meteorology Department and the Earth System Science Interdisciplinary Cen-
ter (ESSIC) provide a unique environment for students working in earth sciences.
Our Mathematics and Physics departments have proven records in promoting inter-
disciplinary interactions among students.

Currently, the U. S. has a lack of well-trained specialists in data assimilation at
operational centers. In order to address this problem we have invested heavily in
infrastructure to train students for careers in academia, industry, and government.

We strongly encourage our graduate students to use our large-scale computers
(two Beowulf clusters, and an IBM SP2). This allows them to work on models of
much greater sophistication and relevance than are typically available in graduate
programs.

We will motivate interest from undergraduates in our proposed area through a
mathematical modeling class taught by Dr. Hunt. The class is project based, and
one area of focus will be interdisciplinary problems involving mathematics and the
earth sciences.

5 Collaboration with NOAA scientists
We are planning to conduct our research in close collaboration with NCEP scien-
tists. The close proximity of NCEP and the University of Maryland will allow us to
have regular meetings with them. In fact, we have had several such meetings while
developing the experimental version of the LEKF for the NCEP GFS. Our codes
are built by using widely available standard mathematical packages and program
libraries developed at NCEP. Since our codes input and output data in formats rou-
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tinely used at NCEP, the transfer of our codes to NCEP for further testing and/or
operational implementations, should be straightforward

6 Work Plan and Project Management
Our proposed research will consist of three main steps of enhancing the implemen-
tation of the LEKF on the NCEP GFS. We will also generate ensemble forecasts as
part of each step, and the forecasts will be verified using a wide range of determin-
istic and probabilistic forecast scores. Our progress will also be tested by assess-
ing the analysis and forecast impact of observations collected during THORPEX
Observing-Systems Test (TOSTs) and THORPEX Regional Campaigns (TReCs)
always using the most advanced version of our system.

Year 1 Our effort will be focused on implementing the 4D extension of the
scheme and introducing the direct minimization of the cost function. Both new
components will initially be validated by assimilating simulated observations. We
will start assimilating real radiosonde and surface observations. This step will also
include retrospective analysis/forecast experiments with dropsonde observations
collected during operational Winter Storm Reconnaissance (WSR) field programs
and THORPEX TOST and TReC field campaigns.

Year 2 Our efforts will be focused on improving the representation of model er-
rors in the LEKF. While in the first year we are planning to use simple multiplicative
and additive variancea inflation schemes to represent the effects of model uncertain-
ties and dynamical noise on the analysis error covariance matrix; in the second year
we expect to make several refinements to our variance inflation scheme. We expect
that our final scheme will be an additive scheme that will inflate the variance in
an adaptive way depending on the geographical location and the importance of the
different phase space locations.

Year 3 Our efforts will be focused on the assimilation of remotely sensed obser-
vations. This would include generating locally high resolution “true” atmospheric
states by integrating the NCEP Regional Spectral Model (RSM), implementing the
latest version of the LEKF on the NCEP RSM, and running OSSE experiments
to asses the analysis/forecast impacts of locally high resolution observational data
sets. Intensive testing of the data assimilation system, hopefully including parallel
runs with operational systems, would also take part in this year.

Project Management. The PI, Istvan Szunyogh, and co-PI Brian Hunt, will
oversee the research project. They will be responsible for talking with the appropri-
ate members of the research team on a regular basis, providing advice and direction.

NCEP is a 30-minute drive from the University of Maryland campus. The close
proximity of the two institutions will allow for regular meetings between the re-
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search team and NCEP scientists to discuss the latest results and to help us maxi-
mize the value of our research products in supporting NOAA’s mission within the
THORPEX program . We will also be ready to help the transfer of our codes to
NCEP’s computer, once NCEP scientists feel that our product can be useful in sup-
porting their mission.

7 Budget Justification
Our aforementioned progress has been made possible by one-time support from the
W. M. Keck and McDonnell Foundations. From these grants, we have invested
nearly $1.5 million into building a computational infrastructure that can support
research with the NCEP GFS model, and into developing the prototype of the LEKF
for the NCEP GFS. The support of the W. M. Keck Foundation has already ended
and is nonrenewable. The support of the McDonnell Foundation will end in October
2005 and is much less than needed to support our interdisciplinary team. While we
feel that the amount we request is small compared to what we have invested from
non-federal funding sources, the support of NOAA is absolutely necessary for us to
be able to continue our work on further developing the LEKF for the NCEP GFS.

The research team will be headed by Istvan Szunyogh, who is one of the main
architects of LEKF data assimilation system for the NCEP GFS. He has extensive
experience in operational numerical weather forecasting, especially in analyzing the
impact of observations collected adaptively in field programs. He is one of the lead
authors of several widely cited papers on the effect of targeted weather observations
(Szunyogh et al., 1999a,b, 2000; Szunyogh et al. , 2002; Langland et al., 1999;
Majumdar et al., 2001; Toth et al., 2000) and his research helped the operational
implementation of the Winter Storm Reconnaissance program. He will devote ap-
proximately 33% of his time (4 months per year) to the project. The co-PI, Brian
Hunt, is a mathematician and also a well-established expert on dynamical systems
theory. He played a key role in working out the mathematical foundation of the
LEKF scheme. Since he is a tenured associate professor, he will devote more than
the 1 month per year to this project, for which we request funding. Edward Ott
is a Distinguished University Professor, who is the top cited physicist in nonlinear
dynamics and chaos. He developed the theoretical framework and worked out the
mathematical details (with Hunt) of the LEKF algorithm. He is the lead author of
our papers on the LEKF (Ott, 2003a,b). Since he is a tenured professor, he will de-
vote more than the 0.5 month per year to this project, for which we request funding.
Eric Kostelich is a Professor of Mathematics at the Arizona State University, who
is a well known expert on dynamical systems theory and scientific computing. He
is the main architect (with Szunyogh) of the LEKF code. He will play a key role in
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our further code development and numerical experimentation. He will spend spend
one full month each year at the University of Maryland as a visiting professor.

We request funding for 1.5 month salary of the person who will manage our
computer clusters used for the proposed research. We also request funding for the
full-year support of a graduate student. Travel funds are requested to participate
and present results at THORPEX meetings; to support one 2-week visit per year for
Kostelich at the University of Maryland (in addition to his one month stay as a visit-
ing professor) and a two-week visit by the PI at the Arizona State University. These
visits will allow for intense discussions needed for planning code development and
research papers. A modest fund is also requested for publication fees. Indirect cost
is computed according to the rules of the University of Maryland.
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