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Goals: 
-Use techniques from shadowing theory to estimate the effect of correcting for model error during nonlinear integration 
of a forecast model.   
-Identify and correct the state-independent and state-dependent model errors associated with reduced dimension 
weather models. 
-Estimate model errors for the NCEP operational model, interface with data assimilation project at Maryland. 
 
Motivation:  Numerical weather forecasting errors grow with time as a result of two contributing factors.  First, 
atmospheric instabilities amplify small perturbations causing indistinguishable states of the atmosphere to rapidly 
diverge.  Efforts to reduce internal error growth focus on choosing ensemble perturbations in a clever manner.  Second, 
model deficiencies introduce errors during the model integration leading to external error growth. This external model 
error includes inaccurate forcings, unrealistic parameterizations used to simplify the physics, and sub-grid scale 
phenomena. The presence of model error impacts forecasting skill for both short and extended range predictions.  As 
the methods of data assimilation and generation of initial perturbations become more sophisticated, compensation for 
model deficiencies is essential. 
 
To evaluate the performance of a numerical weather model L, it is natural to ask how long a forecast trajectory will 
accurately describe the observed weather H.  Model deficiencies of L in approximating H are in this context defined by 
the difference in tendency predicted by L and H for a given initial condition.  Shadowing theory addresses the idea that 
some rather special systems H have the following property:  given a δ > 0, when system L is sufficiently close to H, 
each trajectory of H will be within δ of some trajectory of L for all time.  In other words, each trajectory of H is δ-
shadowed by a trajectory of L.  These systems are called hyperbolic, the tangent space at each point along a trajectory 
is composed of expanding and contracting subspaces whose angle is bounded away from zero.  In particular, the 
dimensions of these subspaces do not change from point to point.  Shadowing trajectories are unlikely to exist for non-
hyperbolic systems.  The system describing the weather is almost certainly not hyperbolic and as a result, shadowing of 
the atmosphere fails quickly.  
 
Progress:  Fortunately, a successful forecast need not be an actual shadowing trajectory.  Assimilating observations of 
H periodically, we may correct a forecast of L.  The resulting pseudo-trajectories of L can remain close to H (for a 
reasonable definition of 'close').  Using a method of data assimilation similar to breeding, we have found pseudo-
trajectories of a low-resolution model L (given by Emanuel and Lorenz '98) which shadow an H trajectory for orders of 
magnitude longer than true trajectories of L.  We refer to these pseudo-trajectories as stalking solutions, they are 
essentially a time series of analysis states resulting from a data assimilation scheme.  We have also found that the 
stalking time is predicted by a 1-D map of forecast error under expansion and contraction.  The results will be 
submitted to Physical Review Letters this spring. 
 
Ideally, we could identify pseudo-trajectories of L which remain close to H with only observations of H.  In other 
words, we would like to make corrections to the forecast state based on an estimate of the external error.  In an attempt 
to find such trajectories, we seek a state-dependent model error correction term, to be integrated into a forecast model.  



Experiments have been carried out using Marshall and Molteni's 1993 global quasi-geostrophic model (L) and the 
NCEP reanalysis from 1980 through 2000 as the target H.  We performed relaxation experiments by nudging the QG 
model forecast towards the NCEP reanalysis, essentially attempting to synchronize the two time series.  Nudging is 
done by introducing a correction to the model forcing of the form c(t) = [q_reanalysis(t) – q_model(t)]/τ every 6 hours, 
where τ is the relaxation time scale.  The time average, N, of c(t) is an estimate of the systematic model error.  While 
nudging is a fairly simple method of data assimilation, it performs amazingly well.  Despite the simplicity of both the 
QG model and the nudging scheme, the anomalous pattern correlation between q_reanalysis and q_model remains 
above 95% throughout the assimilation period, for a wide range of relaxation time scales τ.  Correcting the forcing by 
the bias N increases forecast accuracy significantly (38%). 
  
The time series of anomalous model error corrections, given by c(t) – N, provides a residual estimate of the linear state-
dependent model error.  The time covariance of an uncorrelated group of these residuals gives Empirical Orthogonal 
Functions representing their spatial variability, as well as Principal Components which illustrate variation in time.  The 
time covariance of the corresponding model states are also expanded into EOF's and PC's.  The PC corresponding to 
the dominant error correction EOF can then be written as a linear combination of the model PC's. During subsequent 
forecasts, the forecast state can be projected onto the experimental model states, giving the best representation of the 
original corrections in terms of the current forecast state.  This method of identifying a state-dependent model error 
correction is similar to that proposed by Leith in 1978.  The main difference is that Leith’s method involves directly 
replacing the model forecast with the target data every 6 hours, while the nudging method corrects the forcing and 
involves no analysis of the forecast state.   Both methods have been used to show that although the QG model has a 
large constant systematic error, it does not exhibit a state-dependent systematic error.  We plan to report these results in 
a paper. 
 
Future: 
We are now using the far more realistic primitive equations SPEEDY model described by Molteni in 2003 which 
should allow us to identify a state-dependent model error.  Once we develop and test the methodology on the SPEEDY 
model and determine how it benefits from the correction of the state-dependent error, we plan to implement similar 
methods for model corrections using the NCEP model.  This effort is part of a larger project here at the University of 
Maryland to introduce a state-of-the-art Local Ensemble Transform Kalman Filter for data assimilation. 
 
 
 


