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1. Introduction 
 
 Ensemble-based data assimilation 
techniques (e.g. Houtekamer and Mitchell 
1998, Hamill 2005) are now being actively 
explored as possible replacements for 3-
dimensional or 4-dimensional variational 
analysis. With ensemble-based methods, 
parallel cycles of ensemble forecasts and 
updates to the observations are conducted; 
the ensemble of forecasts is used to estimate 
forecast-error statistics during the data 
assimilation step, and the output of the 
assimilation is a set of analyses, which are 
used as the initial conditions for the next 
ensemble of short-range forecasts. 
 
 Are ensemble data assimilation 
schemes competitive with operational NCEP 
3D-Var method using realistic numer-ical 
weather prediction models and obser-vation 
data sets? Ideally, such a test would 
demonstrate the ability to assimilate the 
current full observational data set, including 
satellite radiances, using a high-resolution 
model and a large ensemble.  However, 
computational expense of ensemble-based 
assimilation methods scale linearly with the 
number of observations, the number of 
ensemble members, and the dimension of the 
model state (Tippett et al. 2003), so a robust 
test like this is still not computationally 
feasible in a research environment. 
Accordingly, in this study we will explore 
ensemble-based data assimilation in a 
moderate-resolution general circulation model 
(GCM) assimilating a thinned set of 
observations.  See also Houtekamer et al. 
(2005). 
 
2.  Model, observations, and data 
assimilation technique.  
 
a. Forecast Model.  
 
 The forecast model is the NCEP 
Global Forecasting System (GFS) model, a 
global spectral model with a sigma vertical 

coordinate.  We used the version of the model 
(wwwt.emc.ncep.noaa.gov/gmb/) operational 
in March 2004, but the resolution was reduced 
to T62 L28.  
 
b.  Filter and computer configurations. 
 
 The EnSRF is the data assimilation 
method used here.  For brevity, a description 
of the method will be skipped.  For details on 
this algorithm, see Whitaker and Hamill 
(2002).  For a review of ensemble-based 
assimlation techniques in general, see Hamill 
(2005).  
 
 The EnSRF was run with 100 
members.  The analysis was performed on a 
128*64 Gaussian grid at each of the 28 σ 
levels.  The method was run on the NOAA 
High-Performance Computing System 
(http://hpcs.fsl.noaa.gov/ ) Intel Cluster.  
 
 The EnSRF used a horizontal 
covariance localization of the form in Gaspari 
and Cohn (1999), with the correlation function 
tapering to zero at 2800 km.  A vertical 
localization was applied as well. For example, 
the increment from a surface observation 
tapered uniformly in ! to zero increment at 2 
scale heights (that is, the ! such that 
! ln(" ) = 2 ). 
  
 It was expected that the form of the 
model-error parameterization would have a 
substantial impact on the accuracy of the data 
assimilations. Here we will test three different 
approaches.   
 
 The first model error parameterization 
was covariance inflation (Anderson and 
Anderson 1999), which simply expands 
ensemble spread in the background’s 
subspace.  In this experiment, spreads were 
inflated by 30 % in the Northern Hemisphere 
(where observations are more plentiful, 
resulting in a smaller analysis spread), and 20 
% in the Southern Hemisphere.  The amount 
of inflation was tapered between the Northern 



and Southern Hemispheric values between 
25oN and 25oS.  To make sure that spread 
was not inflated near the model top, where no 
observations make any increments, the 
inflation also was designed to taper to zero at 
six scale heights. 
 
 The second model-error parameter- 
ization was the Zhang et al. (2004) approach 
of relaxing the posterior back toward the prior.  
No noise is actually added to the background 
ensemble members, but after the update, the 
analysis perturbations are linearly combined 
with the background perturbations.   The 
combination is 50/50. 
 
 The third approach was to add 
different random noise to each ensemble 
member.  Here, the noise was generated from 
differences between random NCEP-NCAR 
reanalysis states separated by 6 h, scaled by 
25 percent. Given that this experiment was 
conducted with January observational data, 
only reanalysis states from December, 
January, and February 1971-2000 were 
considered for random selection. 
 
c. Observations. 
 
 Real observations were assimilated in 
this experiment.  The observations consisted 
of NCEP’s full quality controlled real-time data 
stream from January 2004, with the following 
exceptions.  First, no satellite radiances or 
retrievals were assimilated; this left surface 
observations, raobs, cloud-drift winds, ACARS 
winds, and wind profilers.  Due to problems in 
modeling the boundary layer, we chose to not 
assimilate observations below sigma level 0.9, 
with the exception of surface pressure, which 
was vertically adjusted to the model’s 
orography.  No humidity data was assimilated.  
This data amounted to approximately 145,000 
observations at the 0000 and 1200 UTC, and 
60,000 observations at the “off times” such as 
1500 UTC. 
 
 Observation-error statistics were the 
same as those used operationally at NCEP in 
2004.  Observations were assimilated every 3 
h.  All observations were assumed to be valid 
at the time of the analysis; that is, in the data 
assimilation, the H operator does not 
interpolate between model forecast states to 
the time of the observations, as in “FGAT” 
(first guess at appropriate time) algorithms.  

An additional quality control “background” 
check to the observations was added.  If the 
mean increment was too large, as measured 

by y ! H x
b

> 5( HP
b

H
T

+ R , then the 

observation was not assimilated. Here, Pb  and 
R denote the background-error and the 
observation-error covariance matrices, 
respectively.  H is a linearization of H, the 
observation operator, converting the model 
state to the observation location and type, y is 

the observation vector, and x
b is the 

ensemble mean background. 
 
3.  Results. 
 
 Figure 1 shows the time-averaged 
spread in the random noise model error 
simulation before and after the introduction of 
the model error.  Note that noise was 
preferentially introduced in the storm tracks.  It 
was not apparent whether a priori whether this 
was desirable.   
 

 
Figure 1: Time-averaged surface-pressure spread 
(hPa) before and after additive model errors were 
added to background ensemble. 
 
 For the random additive error run, the 
Northern Hemispheric spread of surface 
pressure in the analysis was 0.707 hPa.  For 
the background forecast 3 h later, before the 
introduction of random noise, the spread was 
0.932 hPa.  After the introduction of random 
noise to simulate model error, the spread was 
increased to 1.044 hPa. The most apparent 
thing from these statistics is the relatively 
rapid growth of errors in the 3 h subsequent to 
the forecast. For comparison, the observation-
error spread statistic for surface pressure 
were 1.0 hPa over land and 1.6 hPa over 
water.  
 



 3-day forecast errors from a variety of 
analyses are shown in Fig. 2.  These statistics 
reflect the errors for a 10-day period in 
January after a 5-day spinup.  The T62 
forecast errors from the EnSRF with the three 
different model error parameterizations are 
shown, as well as forecasts from the NCEP-
NCAR reanalysis 2 (R2), and forecasts 
initialized with the operational T255 GDAS 
(“Global Data Assimilation System,” a 
spectral-statistical interpolation 3D-Var 
technique based on Parrish and Derber 
1992).  R2 used a somewhat different data 
set, including satellite retrieval information, but 
the reanalysis was cycled forward with an 
older, 1998 version of the GFS.  The 
operational T255 GDAS included a large 
number of satellite radiances that were not 
assimilated in any of the square-root filter 
implementations. 
 
 Figure 2 shows that the smallest 
meridional wind forecast error relative to the 
assumed truth, the GDAS, was forecasts 
initialized with the GDAS itself.  Somewhat 
larger errors occurred in forecasts initialized 
from the additive error EnSRF and R2, with 
the EnSRF slightly smaller in error.  The 
covariance inflation EnSRF and Zhang et al. 
approach were somewhat worse.  The 
differences in these forecasts were somewhat 
subtle.  For example, the reduction in error 
between GDAS and the additive-error EnSRF 
amounted to about a 3-6 hour extension in 
forecast lead time. 
 
 Is there any reason to expect that the 
flow-dependent error covariances provided 
any beneficial influence in the data 
assimilation? Figure 3 indicates that there 
may be some benefit.  Here the EnSRF 
algorithm was re-run, but at each assimilation 
time the flow-dependent perturbations were 
totally replaced by random “model errors.”  As 
can be seen, the EnSRF where some model 
error was added to forecasts was significantly 
smaller in error than the EnSRF with the total 
replacement of perturbations. 
  
 Still, why weren’t the ensemble filters 
performing more skillfully than the existing 3D-
Var from GDAS? In a previous experiment 
with a sparse network of surface-pressure 
observations, the ensemble filter outper-
formed 3D-Var (Whitaker et al. 2004).  
However, the potential advantage offered by 

ensemble-based data assimilation methods, 
improved background-error covariances, is 
less crucial to data assimilation accuracy 
when observations are plentiful.  Hence, the 
result is perhaps not so surprising, for GDAS 
used many more observations.  Another 
possible advantage is that the GDAS was 
conducted with a much higher resolution 
forecast/analysis system (T255). 
 

 
 
Figure 2: Time-averaged 72-h meridional wind 
forecast errors initialized from the different data 
assimilation methods. 
 
 
 

 
Figure 3. 72-h forecast errors from the GDAS, 
EnSRF, and filter where flow-dependent 
perturbations were replaced with additive errors. 
  



 
 The most appropriate benchmark 
would be forecasts from the operational 
GDAS at T62 resolution assimilating the same 
subset of observations as the ensemble filters 
assimilated.  Unfortunately, these results were 
not available at the time of preparation of this 
manuscript.  We are working with staff at 
NCEP to generate these analyses and 
forecasts. 
 
4. Conclusions 
 
 A 100-member ensemble-based data 
assimilation method was tested in a T62 GCM 
with a somewhat reduced set of observations 
(primarily no satellite radiances).  The 
ensemble method, the EnSRF, produced 
analyses that were competitive in quality to 
the NCEP-NCAR reanalysis, which 
assimilated more observations but used an 
older version of the forecast model.   
 
 These results suggest the potential 
operational utility of ensemble-based data 
assimilation methods.  There are still some 
important questions to address, including how 
error characteristics might be improved 
(observation and model error), the importance 
of resolution (would a higher-resolution model 
produce more realistic background 
forecasts?) and the computational expense 
(can an algorithm be designed whose costs 
do not scale linearly with the number of 
observations?). 
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