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Since 12 January 2005, an ensemble Kalman filter (EnKF) is being used in
Canada for global atmospheric data assimilation. It provides the initial condi-
tions for a medium-range ensemble prediction system.

Initial EnKF analyses were not of the same quality as the higher resolution
analyses that were obtained with a 4D-Var algorithm for the high-resolution
deterministic forecast at our center.

In part this was due to the lower resolution - and correspondingly lower com-
putational cost - of the EnKF. In part this was due to weaknesses of the initial
EnKF algorithm.

We have modified the EnKF algorithm and are working towards a clean com-
parison with 4D-Var.
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Overview

• introduction

• the January 2005 operational EnKF implementation

• adding time interpolation

– expansion of the control variable

– digital filter finalization to obtain a smooth trajectory

– addition of model error at the beginning of the trajectory

• preliminary comparison with 4D-Var

• future work
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The January 2005 Operational EnKF Implementation
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We use the EnKF and the GEM forecast model to generate 96 analyses every
6 hours.
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The fourth dimension of the (Canadian) ensemble Kalman filter

With the EnKF, we transport covariance information from one assimilation cy-
cle to the next. In this regard, our EnKF is a truly 4D algorithm.

However, to interpolate the model state to the observations, we use a unique
model state that is valid at the middle of the 6-hour assimilation window. Con-
sequently, in the forward operator H, we neglect the model evolution during
the 6-hour window. Thus, for the forward interpolation, the Canadian EnKF is
a 3D algorithm.

It follows that, unlike 4D-Var, we are unable to benefit from all available ob-
servations in the 6-hour window and have to limit ourselves to observations
in the central 3-hour portion of the assimilation interval, as was done in the
3D-Var algorithm at our center.
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6-h assimilation window

An EnKF can assimilate all data in a 6-h window at the appropriate time (Hunt
et al. 2004, Tellus A), as is currently done in 4D variational algorithms:
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For the time interpolation, we need the model state at t = 3h, t = 4h30, t =
6h, t = 7h30 and t = 9h. Only the analysis at the central time t = 6h is
used to start the subsequent integration.
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Length of the state vector
The cost of the data assimilation step is dominated by operations involving
the matrix PHT . These have a cost proportional to the number of model
coordinates Nmodel ∗Ntimelevels, to the number of observations Nobs and to
the number of ensemble members Nens:

cost = O(Nmodel ∗Ntimelevels ∗Nobs ∗Nens).

Using Ntimelevels = 5 leads to a problematic five-fold increase of the cost of
the analysis.

In our sequential algorithm, we assimilate the observations one batch at a
time. The ensemble of forecast trajectories gradually evolves into an ensem-
ble of analyzed trajectories as more and more batches of observations are
assimilated. We need to keep track of the trajectories because the forward
operator H first interpolates the model state to the time of the observation.

Although we obtain an analysis trajectory valid at Ntimelevels times, we only
need the central model state (valid at t = 6h) to start the subsequent integra-
tion.
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Expansion of the state vector
The vector Hx of interpolated observations can be added to the state vec-
tor (Tarantola 1987; Anderson, MWR, 2001; Gauthier 2005), which then be-
comes (x, Hx). The classical advantage is that H can be a complex operator
- like a parameterization of convection - that exists in the forecast model but
not normally in the assimilation code. Combined with a sequential algorithm,
we obtain an evolving state vector (x, Hx). During the sequential algorithm
we do not have to re-evaluate H.

With this algorithm, we precompute H and consequently we no longer need to
keep track of the entire evolving trajectory. It is sufficient to have as state vec-
tor (x(t = 6h), Hx(t = tobs)). All relevant information about the temporal
evolution is in the correlations between x(t = 6h) and Hx(t = tobs).

This revised algorithm, with time interpolation and an expanded state vector,
has a cost:

cost = O((Nmodel + Nobs) ∗Nobs ∗Nens) ≈ O(Nmodel ∗Nobs ∗Nens)
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Imbalance in the initial conditions
To quantify the imbalance in a given analysis, we estimate the second differ-
ence D2(ps) for surface pressure, ps, from the time series provided by a 24-h
integration starting from that analysis.

D2(ps) = ps(t + 45min)− 2ps(t) + ps(t− 45min)

The global r.m.s. value ‖ D2(ps) ‖ is subsequently obtained using:

‖ D2(ps) ‖2= (D2(ps), D
2(ps)) =

1

S

∫
S

D2(ps)D
2(ps)dS
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Imbalance and localization
Initial imbalance ‖ D2(ps(45min)) ‖

rh(km) rz = 2 rz = 4 rz = 6 rz = 8 rz = 100
2800 2.618 2.913 3.100 3.236 3.622
5600 2.600 2.725 2.783 2.815 2.925
8400 2.744 2.520 2.381 2.345 2.423

11200 2.883 2.420 2.316 2.133 2.145
280000 1.996 1.558 1.223 1.153 0.454

The second difference of surface pressure estimated at t=45 min for different
values of the localization parameters rh and rz. Horizontal correlations are
forced to zero at a distance of rh km and vertical correlations at rz units of ln
p.

Relaxing the localization has only a small impact on the imbalance observed
in the surface pressure component. In the limit of no localization, we obtain
balanced initial conditions.

9



Impact of a digital filter
A digital filter finalization technique (Fillion et al., 1995, Tellus A) can be used
to obtain an integration that is balanced from time step 4 (at 3 hours) onwards.

Applying a digital filter in the operational EnKF system, which assumes all
data are valid at 6 h, leads to a small positive impact on our verification scores.

With the digital filter, we can consider time interpolation in the 6-h observation
window (much like a 4D-Var).
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Interpretation of model error
The parameterized model error has a length of 1.39 m/s as measured with an
energy norm. This is almost as large as the total impact of the model physics
(1.52 m/s). It is hard to believe that the model physics can be 90% in error.
However, the regular addition of a model error that is this large enables us to
maintain sufficient spread in the ensemble.

Alternatively, we can take the position that every imperfection in the data-
assimilation cycle should be accounted for by the model-error term. If, for
instance, the H operator does not include time interpolation, we will need to
compensate for this by using a larger model error, Q.

In view of this, we can argue that the parameterized model-error perturbations
could actually be added to the ensemble of analyses!
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An EnKF configuration with time interpolation
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We obtain incremental improvements by relocating the model-error addition,
by using a digital filter and by adding time interpolation. The revised configu-
ration has been used for a preliminary comparison with 4D-Var.
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A first comparison of the EnKF with 4D-Var

For now, the comparison suffers from a series of important shortcomings:

1. the GEM forecast model was not run in the same configuration,

2. the 4D-Var assimilates more observation types (notable GOES humidity
data and dewpoint depression above 200 hPa),

3. the observation operators H are not by construction the same (some
differences may therefore exist),

4. the 4D-Var has been able to reject some of the observations that would
otherwise have been used for the verification,

5. the quality of the ensemble mean 6h forecast from the EnKF system is
compared with the unique 6h forecast from the 4D-Var system,

6. only one short experiment was performed in summer.

The preliminary results are as follows:
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Verifying the EnKF and 4D-Var against radiosonde data

panels for u,v, height, T and T-Td

Period: 1-10 August 2004.

Blue curves: the pre-
implementation 4D-Var

Red curves: The EnKF on a 400
× 200 grid with time interpolation
for H

The EnKF is inferior for winds be-
low 400 hPa, for temperature at
200 hPa and humidity above 300
hPa.

The EnKF is superior for winds
above 100 hPa, and for tempera-
ture and humidity at the surface.
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Same ballpark results

A comparison between the EnKF and 4D-Var is being performed at Environ-
ment Canada. Preliminary results would appear to be in the same ballpark.

Unfortunately, due mostly to different development paths, some avoidable dif-
ferences exist between the experimental environments in which the two al-
gorithms are run. At this point, these may have a bigger impact than the
differences found. It is, therefore, too early to arrive at any definitive state-
ments.

We are working towards having more similar experimental environments.

This comparison may lead to a revision and improvement of both algorithms.
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Future work

We will reduce the amplitude of the homogeneous and isotropic model-error
parameterization.

To maintain an appropriately large ensemble spread, we will test the use of
different physical parameterizations for different members of the EnKF en-
semble. In this, we would follow and expand upon what is currently being
done for the Canadian medium-range forecast ensemble.
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Thank you for your attention
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