NEW STATISTICAL POST-PROCESSING RESULTS WITH THE GLOBAL ENSEMBEL SYSTEM

Bo Cui*, Zoltan Toth, Yuejian Zhu, Dingchen Hou*

Environmental Modeling Center, NCEP/NWS *SAIC at Environmental Modeling Center, NCEP/NWS

Acknowledgements: Jeff Whitaker, Tom Hamill

STATISTICAL POST-PROCESSING OF ENSEMBLES

MOTIVATION:

- First phase of NAEFS to be operationally implemented in 2006
 - Develop and implement a statistical post-processing scheme to reduce the biases in ensemble forecasts w.r. t the verifying analysis fields on the model grid
 - Correct both the 1st and 2nd moments

• LIMITATIONS:

- Preliminary study based on:
 - 500 mb height and 2m temperature
 - Four seasons (2004)

METHOD / APPLICATION – 1

 Adaptive (Kalman Filter type) Bias-Correction Algorithm

Implementation of decaying averaging for 1st moment bias

decaying averaging mean error = $(1-w)^*$ prior t.m.e + w^* (f – a)

For each lead time separately, tme = time mean error

- Application to NCEP Operational Ensemble
- OPR_RAW: NCEP T00Z 10 ensemble forecasts
- OPR_DAV2%: w = 2% (most recent ~30 days used)
- OPR_OPT: 31-day centered running mean forecast error is removed, operationally not feasible, used as "optimal" benchmark

METHOD / APPLICATION – 2

CDC GFS Reforecast Data Set (Hamill & Whitaker)

- Model: T62L28 MRF, circa 1998
- Initial states: NCEP Reanalysis
- Duration: 15 days runs at 00Z from 19781101 to now
- Ensemble: Breeding, 10 members used from 15

Bias correction

Climatological (out of sample) mean forecast error (25 yrs) removed (1979-2003, 1st moment)

Experiments

• RFC_RAW

CDC reforecast ensemble forecasts (no bias correction)

- RFC_COR
 Calibrated CDC reforecast
- RFC_OPT

31-day centered running mean forecast error is removed, operationally not feasible, used as "optimal" benchmark

RMS: 500 mb Height, 2004 Summer Northern Hemisphere

OPR_DAV2%

RMS error reduced for first week

RFC_COR

improvement for all lead times wrt RFC_RAW

PAC: 500 mb Height, 2004 Summer Northern Hemisphere

OPR_DAV2%

PAC scores slightly improved for first few days

RFC_COR

very limited improvement over RFC_RAW

Excessive Outliers: 500 mb Height, 2004 Summer Northern Hemisphere

Percentage Excessive Outliers of That Expected for NH 500hPa Height Talagrand Distribution Average For 00Z01MAR2004 — 00Z31MAY2004

OPR_DAV2%

improved performance for up to 5-7 days

RFC_COR

improvement for all lead time vs. RFC_RAW

RPSS: 500 mb Height, 2004 Summer Northern Hemisphere

Northern Hemisphere 500hPa Height Ranked Probability Skill Scores (RPSS) Average For 20040601 - 20040831

OPR_DAV2% RPSS improved for all lead time

RFC_COR

significant improvement for all lead time vs. RFC_RAW

PRELIMINARY RESULTS (1)

1. Decaying averaging (2% weight, ~30-day oper. training data):

- Short range: Works very well, all measures improved (~Day 5)
- Week 2: Limited success
 - Degrades ensemble mean (rms, PAC)
 - Improves probabilistic performance (ie, outlier stats, RPSS)

2. Climatological mean error removed (25-yr CDC training data):

- RMS and PAC: Very limited improvement
- Probabilistic measures (RPSS, etc): significant gain

3. Operational (raw or bias-corrected) vs. CDC bias-corrected ens:

- Ensemble mean: Operational much better than CDC hindcast
 - CDC has ~50% larger initial error
- Probabilistic scores: Operational much better for out to day 10
 - For some measures, CDC hindcasts better beyond day
 10

TENTATIVE CONCLUSIONS (1)

- Adaptive, regime dependent bias correction works well for first few days (almost as good as "optimal")
- Climate mean bias correction can add value, especially for wk2 prob. fcsts

METHOD / APPLICATION – 3, 4

Use large hindcast data set for correcting NCEP operational forecast

$$FCST_{clibriated} = FCST_{OPR} - BIAS_{25yr_clim}$$

Use 4-year average operational forecast error for correcting NCEP operational forecast

$$FCST_{clibriated} = FCST_{OPR} - BIAS_{4yr_error}$$

Two Experiments

- OPR_25YR: 25-year climatological mean fcst. errors removed
- OPR_4YR: 4-year average optimal bias (defined as 31-day centered running mean error, 2000-2003) removed

RMS: 500 mb Height, 2004 Summer Northern Hemisphere

PAC: 500 mb Height, 2004 Summer Northern Hemisphere

Excessive Outliers: 500 mb Height, 2004 Summer **Northern Hemisphere**

Percentage Excessive Outliers of That Expected for NH 500hPa Height Talagrand Distribution Average For 00Z01JUN2004 - 00Z31AUG2004

25

OPR 25YR

no improvement for all lead time vs. OPR DAV2%

OPR_4YR

improvement after day 8 vs. OPR DAV2%

RPSS: 500 mb Height, 2004 Summer Northern Hemisphere

PRELIMINARY RESULTS (2)

4. 25-yr climate mean error (CDC training data)

- The value added by climate mean bias correction is dependent on the NWP modeling system.
- The reforecast climatological mean error can't be used directly to calibrate the NCEP current operational ensemble

5. 4-yr NCEP operational forecast mean error:

- For some measures such as PAC, RMS and outlier stats, the bias-corrected ensemble can get improvement for week-2
- The choice of the length of training data remains a open question
- Generation of large hind-cast ensemble is expensive but can be helpful

METHOD / APPLICATION – 5

 Use large hindcast data set for correcting operational fcst. by using decaying average difference between operational and reforecast

$$FCST_{clibriated} = FCST_{OPR} - BIAS_{25yr_clim} - BIAS_{OPR-RFC}$$

- Application to NCEP Operational Ensemble
- OPR_RFC_DAV2%: 25-year climatological mean fcst. errors and decaying averaging mean error (w=2%) between NCEP operational and CDC refcst. removed

METHOD / APPLICATION – 6

Second Moment Bias-Correction Algorithm

ratio = r.m.s of ensemble mean / standard deviation

decaying averaging mean ratio = $(1-w)^*$ prior time mean ratio + w^* ratio

 $FCST_{clibriated} = FCST_{mean} + Ratio * (FCST_{m} - FCST_{mean})$

For each lead time separately

Application to NCEP Operational Ensemble OPR_DAV2%S: w = 2% (most recent ~30 days used)

RMS: 500 mb Height, 2004 Summer Northern Hemisphere

PAC: 500 mb Height, 2004 Summer Northern Hemisphere

Excessive Outliers: 500 mb Height, 2004 Summer Northern Hemisphere

RPSS: 500 mb Height, 2004 Summer Northern Hemisphere

Excessive Outliers: 500 mb Height, 2004 Summer Southern Hemisphere

Percentage Excessive Outliers of That Expected for SH 500hPa Height Talagrand Distribution Average For 20040601 - 20040830

OPR_DAV2%S close to OPR_DAC2%

OPR_RFC_DAV2%

improvement for week-2 vs. OPR_DAC2% and OPR_DAV2%S

RPSS: 500 mb Height, 2004 Summer Southern Hemisphere

PRELIMINARY RESULTS (3)

- 6. OPR_RFC_DAV2% (use both large hindcast data set and decaying average difference between operational and reforecast)
 - Show improvement for some measures and regions
- 7. Second Moment Bias-Correction Algorithm:
 - No significant improvement, the calculation of the 2nd moment ratio needs more consideration

RPSS: 2m Temperature, 2004 Summer Northern Hemisphere

Northern Hemisphere 2M Temperature Ranked Probability Skill Scores (RPSS) Average For 20040601 - 20040831

RPSS: 2m Temperature, 2004 Winter Northern Hemisphere

Northern Hemisphere 2M Temperature Ranked Probability Skill Scores (RPSS) Average For 20041201 - 20050228

ROC: 2m Temperature, 2004 Summer Northern Hemisphere

Northern Hemisphere 2M Temperature (ROC area) Average For 20040601 - 20040831

ROC: 2m Temperature, 2004 Winter Northern Hemisphere

Northern Hemisphere 2M Temperature (ROC area) Average For 20041201 - 20050228

RPSS: 2m Temperature, 2004 Summer Northern Hemisphere

Northern Hemisphere 2M Temperature Ranked Probability Skill Scores (RPSS) Average For 20040601 - 20040831

TENTATIVE CONCLUSIONS

- Adaptive, regime dependent bias correction works well for first few days (almost as good as "optimal")
 - Frequent updates of DA/NWP modeling system possible
- Climate mean bias correction can add value, especially for wk2 prob. fcsts
 - Generation of large hind-cast ensemble is expensive but can be helpful
- The best performing methods can be selected for use of other ensemble fcst. variables, U, V, cumulative frequency distribution for QPF
- Use of up-to-date data assimilation/NWP techniques imperative at all ranges

OPEN QUESTIONS

- How to gain benefits of both
 - Frequent updates to DA/NWP system AND
 - Large hind-cast data set?
- Are week-2 biases dependent on specific version of DA/wk-1 model used?
 - Will test; if not,
- Will a "hybrid" system work?
 - Use latest DA/NWP system for week-1, with adaptive bias correction
 - Branch off at D5 with less frequently upgraded model with large hindcast data set
 - Combine benefits of improved short-range performance & large wk2 hind-cast data set
- Alternatively, can a large hind-cast dataset be generated before each (major) DA/NWP model upgrade?
- Do we need to consider additional new criteria for operational DA/NWP implementations?
 - Compare objective scores for operational & experimental systems
 - Current practice: Compute scores without bias correction
 - Good for model development purposes
 - Possible additional new way: Compute also scores after bias correction
 - Needed as additional test before operational implementation?
- Implement new DA/NWP systems only if bias corrected fcsts improve?
 - Minor changes may not require new hind-casts
 - Major changes will need generation of associated hind-cast dataset?

Questions and Comments?

More plots on http://www.emc.ncep.noaa.gov/gmb/ens/