PREDICTABILITY MEETING

May 31 2005, 2-4 pm ET

OUTLINE

- Follow-up on 2nd Ensemble User Workshop (May 2004)
 - Include interested Service Center ensemble focal points into predictability group discussions
- Overview of main recommendations:
 - Overall
 - Configuration
 - Data access
 - Statistical post-processing
 - Product generation
 - Verification
 - Training
- Review product generation in more detail
 - Discuss new product to be offered for NDGD

2nd NCEP Ensemble User Workshop SUMMARY RECOMMENDATIONS

- **OVERALL** Enhance coordination of ensemble-related efforts
 - Establish ensemble product working group
 - Continue with monthly Predictability meetings
 - Hold Ensemble User Workshops (part of reestablished SOO workshops)

• CONFIGURATION

Global ensemble:Implement hurricane relocation for perturbed initial conditionsContinue efforts to build multi-center ensemble

Regional (SREF) ensemble: Ensemble run should be coupled closer with hires control (same initial time?) Run 4 cycles per day

• DATA ACCESS

- Provide access to all ensemble data (including members)
- Facilitate user controlled access to data (e.g. NOMAD, on demand, not on rigid schedule)

• STATISTICAL POST-PROCESSING (BIAS CORRECTION)

- Develop techniques for two-stage statistical post-processing
- Operationally implement post-processing techniques

• **PRODUCTS**

- Develop a software toolbox for interrogating ensemble data
- Establish central/local operational product generation suites

VERIFICATION

- Design & develop unified and modular ensemble/probabilistic verification framework

• TRAINING

- Establish NWS formal ensemble training requirements
- Contribute to Ensemble Training Workshops, international activities (AMS, WMO), etc

ENSEMBLE PRODUCTS - CURRENT STATUS

Product development software

- Some functionalities exist
 - Scattered around different developers/platforms/users
 - NCO operations
 - NAWIPS official build
 - NAWIPS development by NCEP SOOs
 - AWIPS
 - Other platforms

• Products generated centrally by

- NCO Limited number of gridded products (operational)
- EMC Additional set of gridded and web-based products (nonoperational)
- Issues:
 - Lack of standard/common software toolbox for ensembles
 - Missing functionalities
 - Multiple software versions of existing functionalities
 - Duplication of efforts
 - Lack of comprehensive, well designed set of products
 - Non-standard set of products/displays (global vs. regional ensembles, etc)
 - NAWIPS, AWIPS requires access to products (web not enough)
 - Need for operationally generated and supported web product suite

ENSEMBLE PRODUCTS - RECOMMENDATIONS

- Develop a software toolbox for interrogating ensemble data
 - Establish development team NCO, EMC, NCEP Service Center experts
 - Compile list of required functionalities See attached list
 - Develop standard software package (subroutines) for each functionality
 - Work in NAWIPS framework
 - Ensure software (subroutines) are portable to different platforms
 - Ensure batch and on demand processing capabilities
 - Provide interactive processing/display capability where needed
 - Offer subroutines for use by AWIPS and broader inter/national community
 - Consider WRF, NAEFS, THORPEX applications
- Establish operational/local product generation suites
 - Use standard software toolbox for product generation
 - Identify list of products See attached list for NCEP Service Center requests
 - Type of product generation based on typical usage:
 - Every day Generate centrally (NCO), produce multiple file formats (NAWIPS/web)
 - Occasionally On demand, locally (NCEP Service Centers)
 - Interactively On screen manipulation/interrogation (NAWIPS)
 - Distribute centrally generated products within NAWIPS, AWIPS
 - Set up and maintain operational NCEP ensemble product web page
 - Post products on web page for use by broader community
 - Provide limited interactive query tools if desired (examples within NOMAD)
 - Contribution to THORPEX goals for use by less developed nations

ENSEMBLE PRODUCTS - FUNCTIONALITIES

List of centrally/locally/interactively generated products required by NCEP Service Centers for each functionality are provided in attached tables (eg., *MSLP*, *Z*,*T*,*U*,*V*,*RH*, etc, at 925,850,700,500, 400, 300, 250, 100, etc hPa)

	FUNCTIONALITY	CENTRALLY GENERATED	LOCALLY GENERATED	INTERACTIVE ACCESS
1	Mean of selected members Done			
2	Spread of selected members Done			
3	Median of selected values Sept. 2005			
4	Lowest value in selected members Sept. 2005			
5	Highest value in selected members Sept. 2005			
6	Range between lowest and highest values Sept. 2005			
7	Univariate exceedance probabilities for a selectable threshold value <i>FY06</i> ?			
8	Multivariate (up to 5) exceedance probabilities for a selectable threshold value <i>FY06?</i>			
9	Forecast value associated with selected univariate percentile value <i>FY06?</i>			
10	Tracking center of maxima or minima in a gridded field (eg – low pressure centers) <i>FY06?</i>			
11	Objective grouping of members FY08?			
12	Plot Frequency / Fitted probability density function at selected location/time (lower priority) <i>FY07?</i>			
13	Plot Frequency / Fitted probability density as a function of forecast lead time, at selected location (lower priority) <i>FY07?</i>			

Additional basic GUI functionalities:

- Ability to manually select/identify members
- Ability to weight selected members Sept. 2005

Potentially useful functionalities that need further development:

- Mean/Spread/Median/Ranges for amplitude of specific features
- Mean/Spread/Median/Ranges for phase of specific features

PRODUCT GENERATION STATUS, May 2005

- Toolbox being worked on
 - Predictability group (EMC, Service Center ensemble focal points) transfers algorithm/software to NAWIPS developers
 - More sophisticated algorithms need to be worked on
 - Pdf manipulation tools, clustering
- Automatic product generation
 - List of requests from Service Centers for both global/regional ensembles collected
 - Currently being prioritized
 - NCO will generate products (Larry Sager), based on NAWIPS tools
 - First set of NAEFS products (March 2006) based on global requests
 - Coordinate SREF products for Winter Desk
 - Web display of selected fields, including those for WMO Regions 3-4
- On-demand (additional) product generation
 - Under purview of Service Center Focal points
- Interactive product generation
 - Not available for all products yet
 - Hardware (speed) limitations for some functionalities

ENSEMBLE-BASED PRODUCTS FOR NDGD

- National Digital Forecast Database (NDFD)
 - Official NWS forecast, prepared by WFO offices (central guidance, coordination)
 - -5x5 (2.5x2.5) km grid, out to 7 days
 - Selected parameters (~15)
 - Available in digital format, query tools, etc
 - No (minimal) provision for information on forecast uncertainty
 - Recommendations from an NDFD workshop, Salt Lake City, 2003
 - Interactive Forecast Preparation System (IFPS) offers tools to work with NDFD grids (forecasters can manipulate gridded data, etc)
- National Digital Guidance Database (NDGD)
 - For posting numerical guidance products same way as NDFD
 - New system, possibility to complement NDFD with forecast uncertainty info
 - Based on global (NAEFS) and regional ensemble forecasts
- What forecast uncertainty info to post in NDGD?

NDGD FORECAST UNCERTAINTY REQUIREMENTS

- Compact (conveys uncertainty without posting all members)
 - Add minimal new info
 - Current disc, telecommunication, etc limitations
- Simple to understand and use by both trained and novice users
 - Expand existing lines of work
 - Informative without additional knowledge, tools, that are not yet available
- Solid & scientifically based
 - Can fit parametric pdf
 - Allows to derive any univariate info
 - Additional tools needed to use this feature
- Room for expansion
 - Can easily be enhanced without major shift in direction
 - More sophisticated methods can be added
 - Possibly use Gaussian Kernel method of D. Unger

NDGD FORECAST UNCERTAINTY ALTERNATIVES

- Current status (in NDFD):
 - Expected value (mean, median, or mode??) of distribution only
- Scenario 1 Add 1 variable
 - Add spread to expected value (1 additional grid)
 - Workshop WG felt that was not enough info
 - Recommended adding 2 pieces of info
- Scenario 2 Add 2 variables
 - Add info on spread on 2 sides of mean/median/mode
 - 10/90 or 20-80 percentile values
 - Preferred as opposed to variance (spread) info that is more abstract
 - NDFD Workshop recommendation

NDGD FORECAST UNCERTAINTY QUESTIONS

- Use mean, mode, or median in NDGD?
 - Mean Expected value
 - Can fall around minimum in pdf
 - Requires additional info (what percentile it corresponds with)
 - Mode Most likely event
 - Appealing heuristically (well defined meaning)
 - Requires additional info (what percentile it corresponds with)
 - Use in future when multiple modes can be considered?
 - Median 50 percentile
 - Heuristic meaning (half below, half above)
 - Consistent with 10/90 (or 20/80) percentile approach
 - Verifies similarly to ensemble mean
 - No need for additional info
 - Used by HPC in PQPF context
- Use 10/90 OR 20/80 percentile?

- 10/90 is more inclusive (covering explicitly 80% of forecast distribution)

NDGD FORECAST UNCERTAINTY RECOMMENDATION

- Provide 3 ensemble-based guidance products for inclusion in NDGD:
 - 10, 50, and 90 percentile values
 - SREF guidance out to day 3
 - NAEFS guidance out to 16 days
 - Use NDGD grid (5x5 km), with GRIB2 packing, minimal space overhead
- Approach
 - Solicit comments on specific proposal from NCEP Service Centers and regions/field
 - Use NAWIPS software (available soon?) to generate products
 - Work with NAWIPS group to provide algorithm:
 - Simple counting of members with linear interpolation now
 - Gaussian Kernel method in later implementation
 - Factor of 3 increase in disc space
 - D. Ruth positively inclined (WG member at NDFD Workshop)

NDGD FORECAST UNCERTAINTY - DOWNSCALING

- Ensemble uncertainty information
 - Sent on NDGD grid for convenience (if no big overhead)
 - Valid on model grids (32km for regional, 110 km for global ensemble)
 - How to bridge gap between model and NDGD grids?
- Anomaly uncertainty information proposed methodology
 - Establish reanalysis climatology
 - In progress for global (NAEFS), methods can be transferred to regional reanalysis
 - Bias correct ensemble forecasts (wrt operational analysis)
 - Take 10-50-90 percentile values from bias corrected ensemble
 - (For establishing anomaly forecasts, adjust 10-50-90 percentile values to look like re-analysis)
 - Check climatological percentile corresponding to 10-50-90 forecast percentiles
- Provide climatological percentiles corresponding to 10-50-90 percentile forecast values as second set of guidance products

2ND ENSEMBLE USER WORKSHOP

May 18-20 2004, NCEP

DRAFT

RECOMMENDATIONS

Based on presentations, working group, and plenary discussions

June 1 2004

WORKING GROUP PARTICIPANTS (26)

CONFIGURATION

Co-leaders: Jun Du and Mozheng Wei

Participants: Rick Knabb, Richard Wobus, Ed O'Lenic, Dingchen Hou

STATISTICAL POST-PROCESSING

Co-leaders: Paul Dallavalle & Zoltan Toth

Participants: Keith Brill, Andrew Loughe, DJ Seo, David Unger

DATA ACCESS

Co-leaders: Yuejian Zhu and David Michaud

Participants: David Bright, Minh Nguy, Kathryn Hughes

PRODUCTS & TRAINING

Co-leaders: Jeff McQueen and Pete Manousos

Participants: Paul Stokols, Fred Mosher, Paul Janish, Linnae Neyman, Bill Bua, Joe Sienkiewicz, Binbin Zhou

ADDITIONAL WORKSHOP PARTICIPANTS (14)

Steve Tracton, Mike Halpert, Brian Gockel, Brent Gordon, Mark Antolik, Barbara Stunder, Michael Graf, Dave Plummer, Steve Schotz, Jon Mittelstadt, Malaquias Pena, Glen Zolph, Steve Lord, David Caldwell

2nd NCEP Ensemble User Workshop SUMMARY RECOMMENDATIONS

- **OVERALL** Enhance coordination of ensemble-related efforts
 - Establish ensemble product working group
 - Continue with monthly Predictability meetings
 - Hold Ensemble User Workshops (part of reestablished SOO workshops)

• CONFIGURATION

Global ensemble:Implement hurricane relocation for perturbed initial conditionsContinue efforts to build multi-center ensemble

Regional (SREF) ensemble: Ensemble run should be coupled closer with hires control (same initial time?) Run 4 cycles per day

• DATA ACCESS

- Provide access to all ensemble data (including members)
- Facilitate user controlled access to data (e.g. NOMAD, on demand, not on rigid schedule)

• STATISTICAL POST-PROCESSING (BIAS CORRECTION)

- Develop techniques for two-stage statistical post-processing
- Operationally implement post-processing techniques

• **PRODUCTS**

- Develop a software toolbox for interrogating ensemble data
- Establish central/local operational product generation suites

VERIFICATION

- Design & develop unified and modular ensemble/probabilistic verification framework

• TRAINING

- Establish NWS formal ensemble training requirements
- Contribute to Ensemble Training Workshops, international activities (AMS, WMO), etc

OVERALL ISSUES / RECOMMENDATIONS

• Enhance coordination of ensemble-related efforts

- Among NCO Service Center users
- Between users and NCO / EMC developers
- Between global and regional ensemble groups within EMC
 - Share research, development, and operational procedures where possible
- Establish NCO / EMC / Service Centers Ens. Products Working Group
- Continue (expand via telecom?) monthly Predictability Meetings

• Optimize NCO operational job stream with user input

- For improved integrated forecast decision support
- Periodically reevaluate job stream from user and science perspectives

Reestablish Annual NCEP SOO Workshop

- Rotate focus of workshop among various topics
- Hold Ensemble User Workshop every 3-4 years

ENSEMBLE CONFIGURATION - CURRENT STATUS

Global	Regional
4	2
10	15
T126L28 till 7.5 days	48km
T62L28 beyond	
16 days	63 hrs
Single GFS	ETA (2 conv. schemes), RSM
Breeding	Breeding
N/A	Global ensemble
	4 10 T126L28 till 7.5 days T62L28 beyond 16 days Single GFS Breeding

ISSUES -

COLLABORATIVE PROJECTS MUST ENABLE OPERATIONAL IMPLEMENTATIONS

- Global
 - North American Ensemble Forecast System with Met. Service of Canada
 - Post-processing & product development Aimed at operational applications
 - THORPEX NOAA, NA, & international collaborators
 - Projects on initial and model related perturbations Path to operations
- Regional
 - Northeast Energy Project OAR & Industry collaborators
 - Heat wave forecast related research Should transition into operations
 - WRF FSL, NCAR, USAF and other collaborators
 - Potential for rapid development of next generation operational system

ENSEMBLE CONFIGURATION - RECOMMENDATIONS

Global ensemble

- Implement hurricane relocation for perturbed initial conditions
 - Experiment with techniques used successfully with GFS system
- Continue efforts to build multi-center ensemble
 - Combine NCEP, ECMWF, MSC, JMA, FNMOC ensembles
 - Best possible multi-model approach (with added benefits of initial condition variability)

Regional ensemble (SREF)

- Consider running ensemble & hires ETA (WRF) control from same initial time
 - Utility of off-cycle ensemble (9 & 21Z) is limited when used with 12Z & 00Z controls
 Differences between ensemble & hires control from different cycles hard to interpret
 - Closer coupling between ensemble & hires control allows proper interpretation of both
 - Alternative suggestions for computer resource allocation:
 - Increase less the resolution for both ensemble & hires control in future implementation
 - Decrease resolution for hires forecast beyond, eg, 36 hrs (if skill is not degraded)
 - Run ~5 initial/model perturbation members along with hires control, finish rest of ensemble later
 - Run 5 members from early, hires from final analysis, finish ensemble, run hires window for dominant clusters
 - Study feasibility of combining information from older ensemble with newer hires forecast (J. Du's suggestion)
- Introduce 4 cycles per day, out to 84 hrs if possible Run ensemble at 00, 06, 12, & 18Z
 - Will allow comparison of hires control and lowres ensemble, enhancing utility of both

Additional suggestions for both systems

- Membership
 - Evaluate effect of increased membership in combination with post-processing gains
- Spatial resolution As computational resources increase,
 - Increase ensemble resolution (~50-50% resources for hires control & lores ensemble)
- Initial perturbations
 - Continue research aimed at better quantification of initial uncertainty
- Model error representation
 - Continue research on stochastic model perturbations & model diversity

ENSEMBLE DATA ACCESS - CURRENT STATUS

- **Global ensemble** 1x1 grid, pgrib, enspost, Sager file types
 - NCEP Service Centers
 - AWIPS
 - NCEP ftp servers
 - NWS server
- Regional ensemble (SREF) GRIB212 (40km)
 - NCEP SCs
 - AWIPS
 - NCEP ftp servers
 - NWS server
- Issues:

All data available 2 cycles only – Need to add 06 & 18Z cycles? ARIB212 (40km) All data available – Limited NAWIPS access No access to data – Need selected variables Selected variables only – All data needed?

All data available - Limited NAWIPS access

Limited data out to 84 hrs – need 180 hrs (WAFS?)

- None Need to post data
- Disc space usage Inefficient due to use of multiple file formats
 - Same data packaged in various formats for convenient access and historical reasons
- Bandwidth limitations Ftp overload due to data access limited to prepared files
 - Typical user needs only fraction of downloaded data
- Increase in data volume Need advance planning to facilitate future data access
 - Ensembles from other centers; Increased resolution, membership

ENSEMBLE DATA ACCESS - RECOMMENDATIONS

- Provide access to all ensemble data (including members)
 - Allows optimal use of ensemble information by diverse user base
 - Should be feasible given low cost of disc storage space
 - Lower resolution ensemble has similar data volume to hires control
 - Temporary disc space limitations should be mitigated by
 - Freezing output resolution (or list of available variables)

• Facilitate user controlled access to data (e.g., NOMAD)

- Allow users to choose what they want to download by
 - Selecting members, variable, level, time and spatial domain of interest
 - Providing basic functionalities to manipulate data (eg, download derived statistics only – see Products Working Group recommendations)
- Consider for NAWIPS, AWIPS, and ftp dissemination
- Eliminates need for duplicate data files
- Significantly reduces bandwidth requirements
- Prototype system exists (NOMAD, all global ensemble data available)
 - As interim solution until system operational, introduce split pgrib files?

• Shift to use of GRIB2 format

- WMO sanctioned standardized & uniform format for ensemble data
 - Need for international ensemble data exchange (see Configuration WG)
- -x3 (for global) to x5 (for regional) reduction in file size

ENSEMBLE STATISTICAL POSTPROCESSING - CURRENT STATUS

• NWP models, ensemble formation are imperfect

- Known model/ensemble problems addressed at their source
 - No "perfect" solution exists, or is expected to emerge
- Systematic errors remain and cause biases in
 - 1st, 2nd moments of ensemble distribution
 - Spatio-temporal variations in 2nd moment
 - Tails of distributions

No comprehensive operational post-processing in place

- MOS applied on individual members (global ensemble, MDL)
- QPF calibration of 1st moment (global ensemble, EMC & CPC)
- Week 2 calibration with frozen system (global ensemble, CDC)
- Issues:
 - Users need bias-free ensemble guidance products
 - Bias-corrected ensemble members must be consistent with verification data
 - Algorithms must be relatively cheap & flexible for operational applications
 - Post-process on model grid first, then "downscale" to NDFD grid / observs?
 - Level of "correctible" details depends on
 - Bias signal vs. random error noise ratio
 - Sample size of available forecast/observation training data pairs
 - Relatively small sample for short-med. ranges Capture regime dependent bias?
 - Much larger for extended ranges Capture climatological bias via frozen system?

ENSEMBLE STATISTICAL POSTPROCESSING - RECOMMENDATIONS

- Develop techniques for two-stage statistical post-processing:
 - 1) Assess and mitigate biases on model grid with respect to analysis fields
 - Feedback to model / ensemble development
 - 1st moment correction based on: Time mean error; Cumulative distributions
 - 2nd moment correction based on: Time mean ratio of ens mean error & spread
 - Post-processed forecasts bias corrected with respect to reanalysis fields
 - Generate anomaly forecasts using global/regional reanalysis climatology
 - 2) Downscale bias-corrected fcsts from model grid to NDFD/observatn locations
 - "Smart" interpolator for bias correction and variance generation on fine scales
 - Multiple regression (MOS); Bayesian methods; Kalman Filtering; Neural nets
 - Apply downscaling methods on bias-corrected fields (no lead time dependence)
 - Use large reanalysis and corresponding observational data base (&/or NDFD analysis fields)
 - To describe ensemble-based pdf forecasts, use 3-parameter distributions
 - Test two methods, find best fitting analytic distribution (out of ~25 candidates)
 - Simple method: Fit actual ensemble data
 - Kernel approach: Find best fit to climate data, then apply it on each member w/weight
- Operationally implement post-processing techniques
 - Apply basic bias-correction techniques centrally (NCO) to serve wide user base
 - Post-process all variables used from the ensemble (first model, then derived variables)
 - Disseminate bias-corrected forecasts on lowres ensemble model grid
 - Save disc and bandwidth resources
 - Keep raw forecast fields also accessible for special user processing needs
 - Use additional post-processing (if any) locally to address special needs, eg:
 - Hurricane forecasting

ENSEMBLE PRODUCTS - CURRENT STATUS

Product development software

- Some functionalities exist
 - Scattered around different developers/platforms/users
 - NCO operations
 - NAWIPS official build
 - NAWIPS development by NCEP SOOs
 - AWIPS
 - Other platforms

• Products generated centrally by

- NCO Limited number of gridded products (operational)
- EMC Additional set of gridded and web-based products (nonoperational)
- Issues:
 - Lack of standard/common software toolbox for ensembles
 - Missing functionalities
 - Multiple software versions of existing functionalities
 - Duplication of efforts
 - Lack of comprehensive, well designed set of products
 - Non-standard set of products/displays (global vs. regional ensembles, etc)
 - NAWIPS, AWIPS requires access to products (web not enough)
 - Need for operationally generated and supported web product suite

ENSEMBLE PRODUCTS - RECOMMENDATIONS

- Develop a software toolbox for interrogating ensemble data
 - Establish development team NCO, EMC, NCEP Service Center experts
 - Compile list of required functionalities See attached list
 - Develop standard software package (subroutines) for each functionality
 - Work in NAWIPS framework
 - Ensure software (subroutines) are portable to different platforms
 - Ensure batch and on demand processing capabilities
 - Provide interactive processing/display capability where needed
 - Offer subroutines for use by AWIPS and broader inter/national community
 - Consider WRF, NAEFS, THORPEX applications
- Establish operational/local product generation suites
 - Use standard software toolbox for product generation
 - Identify list of products See attached list for NCEP Service Center requests
 - Type of product generation based on typical usage:
 - Every day Generate centrally (NCO), produce multiple file formats (NAWIPS/web)
 - Occasionally On demand, locally (NCEP Service Centers)
 - Interactively On screen manipulation/interrogation (NAWIPS)
 - Distribute centrally generated products within NAWIPS, AWIPS
 - Set up and maintain operational NCEP ensemble product web page
 - Post products on web page for use by broader community
 - Provide limited interactive query tools if desired (examples within NOMAD)
 - Contribution to THORPEX goals for use by less developed nations

ENSEMBLE PRODUCTS - FUNCTIONALITIES

List of centrally/locally/interactively generated products required by NCEP Service Centers for each functionality are provided in attached tables (eg., *MSLP*, *Z*,*T*,*U*,*V*,*RH*, etc, at 925,850,700,500, 400, 300, 250, 100, etc hPa)

	FUNCTIONALITY	CENTRALLY GENERATED	LOCALLY GENERATED	INTERACTIVE ACCESS
1	Mean of selected members			
2	Spread of selected members			
3	Median of selected values			
4	Lowest value in selected members			
5	Highest value in selected members			
6	Range between lowest and highest values			
7	Univariate exceedance probabilities for a selectable threshold value			
8	Multivariate (up to 5) exceedance probabilities for a selectable threshold value			
9	Forecast value associated with selected univariate percentile value			
10	Tracking center of maxima or minima in a gridded field (eg – low pressure centers)			
11	Objective grouping of members			
12	Plot Frequency / Fitted probability density function at selected location/time (lower priority)			
13	Plot Frequency / Fitted probability density as a function of forecast lead time, at selected location (lower priority)			

Additional basic GUI functionalities:

- Ability to manually select/identify members
- Ability to weight selected members

Potentially useful functionalities that need further development:

- Mean/Spread/Median/Ranges for amplitude of specific features
- Mean/Spread/Median/Ranges for phase of specific features

ENSEMBLE VERIFICATION – CURRENT STATUS

For lack of time, this topic was not discussed at the workshop

- Global ensemble verification package used since 1995
 - Comprehensive verification stats computed against analysis fields
 - Inter-comparison with other NWP centers
- Regional (SREF) verification package
 - Basic measures computed routinely since 1998
 - Probabilistic measures being developed independently from global ensemble
- Issues
 - Need to unify computation of global regional ensemble verification measures
 - Unified framework must facilitate wide-scale national/international collaboration:
 - North American Ensemble Forecast System (collaboration with Met. Service Canada)
 - THORPEX International Research Program
 - WRF meso-scale ensemble developmental and operational activities
 - Facilitate wider community input in further development/enhancements
 - How to establish basis for collaboration with NCAR, statistical community, etc

ENSEMBLE VERIFICATION - RECOMMENDATIONS

• Design unified and modular ensemble/probabilistic verification framework

- Data handling/storage
 - Use standard WMO file formats as ensemble data input
 - Allow non-standardized user/site specific procedures
- Computation of statistics
 - Establish required software functionalities (scripts) and verification statistics (codes)
 - Jointly develop and share scripts/subroutines with standard input/output fields
 - Improvements to common infrastructure benefit all
 - Comparable scientific results, independent of investigators
- Access/display of output statistics
 - Explore if standard output file format(s) feasible? Use text or FVSB-type files?
 - Develop/adapt display software for interactive interrogation of output statistics
 - Examples: FVS display system; FSL approach to WRF verification
- Develop and implement new verification framework
 - Utilize existing software and infrastructure where possible
 - Direct all internal ensemble-related verification efforts toward new framework
 - Share work with interested collaborators
 - Meteorological Service of Canada (subroutines, L. Wilson and colleagues)
 - FSL (display tools, A. Laugh)
 - Make new software available to national/international community
 - Coordinate further development with wider community (WMO, etc input)

ENSEMBLE VERIFICATION – DESIGN SPECIFICATIONS Compute statistics selected from list of available

- Point-wise measures, including:
 - RMS, PAC for individual members, mean, median
 - Measures of reliability (Talagrand, spread vs. error, reliability components of Brier, RPSS, etc)
 - Measures of resolution (ROC, info content, resol. comps. of BSS, RPSS, potential econ.value, etc)
 - Combined measures of reliability/resolution (BSS, RPSS, etc)
- Multivariate statistics (e.g., PECA, etc)
- Variables & lead times make all available that are used from ensemble

Aggregate statistics as chosen in time and space

- Select time periods
- Select spatial domain (pre-designed or user specified areas)

Verify against observational data or analysis fields

- Scripts running verification codes should handle verification data issues
- Use same subroutines to compute statistics in either case
- Account for effect of observational/analysis uncertainty?

• Define forecast/verification events by either

- Observed/analyzed climatology, e.g., 10 percentile thresholds in climate distribution
 - Automatically compute thresholds for forecast values
- User specified thresholds automatically compute corresponding climate percentiles
- Ensemble members (like in Talagrand stats) compute climate percentiles

• Facilitate the use of benchmarks:

- Climatology, persistence, or specified prior forecast data set

Prioritize and find balance between

- Flexibility vs. complexity; operational vs. research use, etc

ENSEMBLE TRAINING

- CURRENT STATUS:
 - NCEP Training Material available since 2002 (P. Manousos)
 - COMET professional training module to be released soon (B. Bua)
 - Includes winter weather, severe weather, and general weather forecasting problems
 - Webcast module based on COMAP presentation by D. Bright (by 09/2004, B. Bua)
 - NWS WFO teletraining using VISITView (B. Bua, proposed)
 - Practical use of ensembles
- ISSUES:
 - Official NWS training opportunities/requirements not established
 - Training for professional national, international, and lay users needed
 - Share training resources nationally/internationally

• RECOMMENDATIONS:

- Establish NWS formal ensemble training requirements
- Consider organizing AMS Ensemble Training Workshops
 - Practicing broadcast etc meteorologists
 - Emergency managers
- Share training material on national/international level
 - Establish NWS OS FAQ on ensembles
 - NCEP/HPC International Desk Spanish/Portugese translations of existing material
 - Exchange ideas/material with WMO Ensemble Training initiative
 - Contribute to Socio-Economic Applications part of intl. THORPEX research program