NAEFS Upgrade and Future Plan

Yuejian Zhu and Zoltan Toth

Environmental Modeling Center

http://wwwt.emc.ncep.noaa.gov/gmb/yzhu/html/imp/200811_imp.html

Acknowledgements

EMC: Richard Wobus, Dingchen Hou, Bo Cui

Malaquias Pena, Weiyu Yang, Julia Zhu,

Mozheng Wei, Mike Charles,

Yucheng Song, Jun Du, Mark Iredell,

John Ward and Steve Lord

- CPC: Qing Zhang, Jon Gottschalck, Jae Schemm
- NCO: Christine Caruso Magee, Joey Carr, Brent Gorden,

Daniel Starosta

- MDL: Kathryn Gilbert
- MSC/Canada: Lewis Poulin and Andre Methot

Planned Changes - Summary

- Continue using current operational GFS
- Upgrade horizontal resolution from T126 to T190
 - 4 cycles per day, 20+1 members per cycle
 - Up to 384 hours (16 days)
- Use 8th order horizontal diffusion for all resolutions
 - Improved forecast skills and ensemble spread
- Introduce ESMF (Earth System Modeling Framework) for GEFS
 - Version 3.1.0r
 - Allows concurrent generation of all ensemble members
 - Needed for efficiency of stochastic perturbation scheme
- Add stochastic perturbation scheme to account for random model errors
 - Increased ensemble spread and forecast skill (reliability)
- Add new variables (26 more) to pgrba files
 - Based on user request
 - From current 52 (variables) to future 78 (variables)
 - For NAEFS ensemble data exchange

NAEFS future configuration

Updated: October 2008

	NCEP	СМС	
Model	GFS	GEM	
Initial uncertainty	ETR	EnKF	
Model uncertainty	None	Yes	
Stochastic physics	Yes	Yes	
Tropical storm	Relocation	None	
Daily frequency	00,06,12 and 18UTC	00 and 12UTC	
Resolution	T190L28 (d0-d16)~70km	(d0-d16) ~1.0degree	
Control	Yes	Yes	
Ensemble members	20 for each cycle	20 for each cycle	
Forecast length	16 days (384 hours)	16 days (384 hours)	
Post-process	Bias correction	Bias correction	
	for ensemble mean	for each member	
Last implementation	December 2008 (plan)	July 10 th 2007	

CCS resources (estimated)

- Computation (Current)
 Space (current)
 - T126L28 out to 384 hours
 - Assigned window (75min)
 - Actually using 45 minutes
 - Average 38 nodes
- Computation (future)
 - T190L28 out to 384 hours
 - Use 50 min
 - Average 60 nodes
 - 75% additional computer resources

- - T126L28 out to 384 hours
 - Pgrba files
 - 17 days on CCS for bias correction
 - 55G (x4 per a day)
- Space (future)
 - T190L28 out to 384 hours
 - Pgrba files
 - 17 days on CCS for bias correction
 - 83G needed (x4 for a day)

NEXT NAEFS exchange pgrba files

Variables	Pgrba file	Total 78 (26)
GHT	Surface, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
ТМР	2m, 2mMax, 2mMin, <u>10, 50, 100,</u> 200, 250, 500, 700, 850, 925, 1000hPa	13 <mark>(3)</mark>
RH	2m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
UGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
VGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
PRES	Surface, PRMSL	2 (0)
PRCP (types)	APCP, CRAIN, CSNOW, CFRZR, CICEP	5 (0)
FLUX (surface)	LHTFL, SHTFL, DSWRF, DLWRF, USWRF, ULWRF	6 (6)
FLUX (top)	ULWRF (OLR)	1 (1)
PWAT	Total precipitable water at atmospheric column	1 (0)
TCDC	Total cloud cover at atmospheric column	1 (0)
CAPE	Convective available potential energy	1 (0)
SOIL	SOILW(0-10cm), WEASD(water equiv. of accum. snow depth), SNOD(surface), TMP(0-10cm down)	4 (4)
		26 new vars
Notes	Surface GHT is only in analysis file and first pgrb file when the resolution changed. 23 of 26 new variables are from pgrbb files, 10, 50hPa RH and SNOD are new variables	

NEXT NAEFS pgrba bc files

(bias correction)

Variables	pgrba_bc file	Total 48 (13)
GHT	10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	10 (3)
ТМР	2m, 2mMax, 2mMin, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	13 (<mark>3</mark>)
UGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
PRES	Surface, PRMSL	2 (0)
VGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11 (3)
FLUX (top)	ULWRF (toa - OLR)	1 (1)
		13 new vars
Notes		

Resolution and Diffusion for Global Ensemble Without Stochastic

CRPSS for NH 850hPa temperature

Conclusion

- Based on two sets of retrospective runs (summer and winter 2007)
 - New package improved the forecast skill (score) significantly
 - For deterministic (ensemble mean)
 - For probabilistic (ensemble distribution)
- The better results is benefited from:
 - Increase horizontal resolution (include diffusion)
 - Stochastic perturbation scheme
 - Better initial condition (analysis)
 - Better forecast model (GFS)

Remain Issues

- Tune initial perturbation (may leave this to next implementation)
 - Need to adjust the size of initial perturbation, due to:
 - Model resolution changed
 - Model diffusion scheme changed
 - Improved analysis
 - Experiments are running, but very slow
 - Due to limit computation resource
- Examine bias corrected forecast and down scaling forecast
 - No enough CCS disk storage for 17d pgrb files on line
- Verify tropical storm tracks
 - Working on 2007 summer season
 - Planned for 2008 summer season
- Resource problem
 - Personnel
 - Computation and storage

Downstream Dependencies

- Sigma files
 - SREF
 - Yes
 - It uses sigma forecast
 - Wave ensemble
 - No
 - It uses bias corrected 10m winds
 - Tracking
 - No
 - It uses pgrba file
 - MDL GMOS
 - No
 - It uses pgrba and pgrbb files
 - Public access
 - No
 - We don't post sigma files to public

- pgrb files (pgrba + pgrbb)
 - SREF
 - No
 - It produces pgrb file by itself
 - Wave ensemble
 - Yes
 - But file has the same format for 10m wind
 - Tracking
 - Yes
 - But it uses pgrba file only, the file has the same format
 - MDL GMOS
 - Yes
 - It uses both pgrba and pgrbb
 - Public access
 - Yes
 - pgrba and pgrbb

Plans for FY2009 and beyond

- GEFS
 - Configuration: (4Q 2009)
 - Hind-cast at GEFS resolution (T190L28 (0-384h),
 - Details setting up in discussion
 - Hydro-meteorological ensemble (river ensemble)
 - Pending on operational LDAS/GLDAS
 - Coupling ocean-land-atmosphere model for GEFS
 - Considering ocean model in ESMF
 - Extend forecast to 35(?) days (once per day)
 - With coupled ocean-land-atmosphere model
 - Science:
 - 3-D mask for ET with re-scaling (4Q 2009)
 - Surface perturbations (4Q 2009)

Plans for FY2009 and beyond (cont.)

- NAEFS products
 - Products (1Q-2Q 2009)
 - Statistical down-scaling for CONUS:
 - Additional variables (Tmax and Tmin, wind speed and direction)
 - Pending on RTMA availability
 - Statistical down-scaling for Alaska:
 - 8 variables (T2m, Tmax, Tmin, Psfc, U10m, V10m, 10 meter Ws and Wd)
 - In testing
 - Statistical down-scaling for other regions:
 - Hawaii, Puerto Rico and Guam
 - Pending on RTMA availability
 - NAEFS new variables for data exchange (1Q/2Q 2009)
 - Approximated 25 additional variables for NAEFS data exchange
 - Using GRIB2 format saving additional 30m
 - Need to coordinate with CMC/MSC
 - Dedicated line for NCEP and CMC NAEFS data exchange
 - DS-3 (sooner?)
 - Time saving (high expectation)
 - Precipitation bias correction (4Q 2009 2Q 2010)
 - Full-Bayesian with pseudo-precipitation

Plans for FY2009 and beyond (cont.)

- NAEFS expansion and verification
 - FNMOC global ensemble
 - Blending to NAEFS (2010 plan)
 - Pending on one year evaluation (August 2008 –July 2009)
 - Using mini-Bayesian method for first moment correction
 - Need to coordinate with CMC/MSC
 - Need to resolve the problem for data transform (still missing forecast data for FNMOC)
 - ECMWF global ensemble
 - Blending to NAEFS (2010 plan)
 - Pending on one year evaluation (August 2008 July 2009)
 - Using mini-Bayesian method for first moment correction
 - Need to coordinate with NCO for 00UTC data and 6hr forecast intervals
 - Probabilistic verification
 - Unified probabilistic verification (3Q, 2009)
 - Shared codes with SREF

Plans for FY2010

- GEFS
 - Configuration:
 - Variable resolutions:
 - T270L42 (0-180hr) (considering half-degree products)
 - T190L28 (180-384hr)
 - T126L28 (384-840hr)
 - Full coupling with ocean model (assume in)
 - Science:
 - Improving TS relocation
 - Adopt all new developed TS relocation schemes
 - Improving stochastic scheme
 - Adaptive 2/3-demisional parameters adjustment

Plans for FY2010 (Cont.)

- NAEFS
 - New NAEFS component FNMOC global ensemble
 - 4Q 2009 2Q 2010
 - Pending on one year evaluation (May 2008 April 2009)
 - Using mini-Bayesian method for first moment correction
 - Need to coordinate with CMC/MSC
 - Improving NAEFS products
 - Introduce full Bayesian model to calibrate high moments
 - For precipitation forecast
 - All variables
 - Statistical down-scaling
 - Precipitation
 - Improving current method
 - Adding new variables (pending on RTMA availability)
 - TC related products
 - Including bias correction
 - Seamless weather-climate interface
 - Merge GEFS and CFS

Background!!!