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Why do we need another dataset?
1. This new dataset will be our best estimate for truth on a 

5x5 km (NDFD), 6-hourly grid
2. Bias correction of NAEFS precipitation:

• Need accurate, quality controlled precipitation data for the 
Bayesian Processor of Ensemble (BPE) prior distribution

3. Downscaling NAEFS precipitation forecasts:
• Need data with a high spatial resolution to downscale 

NAEFS precipitation forecasts to the NDFD grid
4. Verification of NAEFS precipitation forecasts:

• Need accurate dataset to verify NAEFS forecasts

Note: This effort has limitations, as it was developed to simply combine 
existing datasets. Much more work will be needed for a more 
comprehensive approach, but this is out of the scope of this work
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Using Information From 2 Datasets
1.CPC Unified Precipitation Analysis

• Back to 2000 (eventually back to 1948)
• ⅛° spatial resolution
• Daily
• Global land

2.RFC Quantitative Precipitation Estimate
• Back to late 2000
• ~5km spatial resolution
• 6-hourly
• CONUS

• RMORPH
• Future use for global post-processing
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Combining Information
CPC:
✓ More confidence in long term statistics of CPC dataset

a. Uniform QC across entire domain
b. Gauge-based

✗ Too low resolution for downscaling
RFC:
✓ High resolution nearly equal to NDFD grid → better 

representation of fine scale temporal and spatial variability 
✗ Non-uniform QC (different RFCs have different methods)
✗ Each RFC may make their own adjustments before mosaicking

Solution: adjust RFC grids so their climatology is consistent 
with the CPC dataset
✓ Have the reliability of the CPC dataset, with the high spatial 

and temporal resolution of the RFC dataset
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Summary of Methods
1. Interpolate RFC data to ⅛° match temporal and spatial 

resolution of CPC data
2.Establish statistical relationship between CPC and RFC 

datasets on the ⅛° grid
3.Adjust RFC dataset to make its climatology look like 

the CPC dataset
4.Downscale adjusted RFC dataset back to original 

temporal and spatial resolution
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Interpolating RFC to ⅛°
Step 1 - Match Resolutions

1.Accumulate RFC precip over same 24-hour period
• 12UTC - 12UTC

2. Interpolate daily RFC grid to ⅛°
• Copygb utility

• Budget interpolation scheme
• Attempts to maintain area-averages

• End result:
• ~7 years of CPC and RFC daily precipitation grids at ⅛° 

spatial resolution
• Relationship is established at the resolution of the 

coarsest dataset, otherwise we will establish 
relationships with imaginary data (if we interpolated 
CPC to 5km)
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Regress CPC against RFC to get a & b
Step 2 - Establish Statistical 

• Relationship established at each gridpoint, for each day 
of the year (a function of geography and regime)

• Use a 60-day window surrounding each day of the year
• Max of ~420 observations per gridpoint (60 days * 7 years)

• Collect all obs. in window where RFC > 0
• Regress CPC against RFC

CPC=a*RFC+b

• Store an ⅛° grid of a and b for each day of the year
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Smooth grids and fill missing data

• Raw a and b grids have missing data
• Even with 60-day window, some regions are dry

Step 2 - Establish Statistical Relationship
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Smooth grids and fill missing data

• Fill missing data with bilinear interpolation

Step 2 - Establish Statistical Relationship
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Smooth timeseries of a and b at each gridpoint

• Fit Fourier Transform (3 harmonics) to raw timeseries
• Replace grid with smoothed coefficients
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Step 2 - Establish Statistical Relationship



a and b Grids - Before and After
Raw

Filled Smoothed
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• Raw: before processing
• Filled: after filling missing 

data with bilinear interpolation
• Smoothed: after fitting Fourier 

Transform at each gridpoint
• See separate movie files for 

evolution of grids over time



CPC* = aRFC + b
Step 3 - Adjust RFC dataset

• Transform linearly each daily ⅛° RFC grid:
• Scale by a and b to get CPC*

• Use appropriate a and b grid based on day of the year
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RFC CPC*



Spatial Disaggregation
Recovering Original RFC Resolutions
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Ratio (H/L)

NDFD

H

NDFD->⅛°->NDFD

L

• Information is lost between H and L
• How much information?

• Take ratio H/L (below)
• This ratio can be used to put high resolution 

information back into RFC*
1. Interpolate RFC* to NDFD
2. Multiply by H/L
• End with RFC* at NDFD resolution. 
• Spatial information recovered from RFCorig

Daily RFC precip
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Temporal Disaggregation
Recovering Original RFC Resolutions
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CPC*

2.Divide 24 hour RFC* into four 
6-hour precip amounts using 
the percentages from RFCorig

1.Determine percentage of daily 
total precipitation in each 6-
hour period in RFCorig
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Pseudo-precipitation
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Problems with Precipitation
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• Unlike most other variables, precipitation is 
discontinuous in magnitude
• Requires different processing than continuous variables:

1. Adjust P.O.P.
2. Adjust mean/spread

P.O.P. is adjusted first Then mean/spread are adjusted

Final CDFOrig. CDF

New POP and amounts



Problems with Precipitation
• Unlike most other variables, precipitation is also 

discontinuous in space
• Have to treat regions with minimal precip. independently of 

regions of no precip. (even though they are closely related)
• For example, large region of light drizzle (below). Model 

generates too little precip over too little area (left). With normal 
precip., cannot force members to precipitate, can just increase 
precip. in already wet members (right)
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Introducing pseudo precipitation

• “Dry side” is the vertical integral of saturation deficit
• Negative-definite
• Highest humidity represented by values approaching zero
• Units of depth, like precipitation
• Dry end is asymptotic

• Integrated quantity could also be
• Benefits of PP:

• Continuous in space and time (therefore can be processed like any 
other variable)

• Normal precip. is preserved (only ‘dry side’ is modified)

if  P > 0

if  P = 0
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sounding
     Dry side of PP is the 

area between the red 
and green traces, 
multiplied by -1
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Example of dry part of PP

• Based on NCAR-NCEP reanalysis
• 1460 or 1465 samples per year
• Each pixel is an average of 17532 samples over 12 years
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Histograms – Seattle and LA
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CDFs of Dry PP - Seasonal Means

Denver

Houston Miami

Wash. DC
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Application of Pseudo-precipitation
• With a single continuous distribution, can bias correct in one step
• Shift entire ensemble distribution to remove bias in PP
• For example, some members constantly produce drizzle (doesn’t verify)…

Bias correction shifts the PP distribution to the left, forcing some of those 
members into the negative PP (stopping the members from precipitating) 
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Raw Ensemble CDF Bias Corrected Ensemble CDF

~83% 
P.O.P.

~20% 
P.O.P.



• Another benefit of PP is that the distribution naturally implies P.O.P.
• If there are many members with larger negative values of PP, this implies a 

greater probability that the atmosphere is not supportive of precipitation 
(negative portion of PP indicates moisture deficit)

• Figure: even though case a & b have the same % members > 0, case b has 
most dry members at a smaller negative value, implying higher P.O.P. 
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Application of Pseudo-precipitation

Implies 
lower P.O.P.

Implies 
higher P.O.P.

~15% 
P.O.P.

~15% 
P.O.P.

a b


