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EKDMOS Implementation

* |nitial Implementation

— 2-m temperature, dewpoint, daytime maximum
temperature, nighttime minimum temperature

— Disseminated as 11 percentile values and the
ensemble mean

— 2.5 km grid over CONUS
— ~3 km grid over Alaska

— Use spread-skill relationships to generate a
reliable probability distribution



EKDMOS Implementation

e Parallel production test on NCEP’s CCS from
March 27 through May 10

* Currently seeking feedback before May 16

— Submit comments on our web page:
http://www.mdl.nws.noaa.gov/~naefs_ekdmos/

— Email Chris.Caruso.Magee@noaa.gov



EKDMOS Method
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Spread Calibration

We develop station-specific spread-skill relationships

Ocalibrated — IBO T ﬁlO-Ensemble

Where B, and B, are determined by relating the skill of
the ensemble mean to the spread of the ensemble
members using the development dataset

Currently use a binning method to estimate the
parameters

Investigating an alternative technique which avoids
binning



Developing Spread-Skill Relationships

Plot of ensemble-
member standard
deviation vs the
absolute error of
the ensemble-
mean.

Each point is one
forecast case

Absolute Ensemble-Mean Error [F]

Ensemble-Member Standard Deviation [F]



Developing Spread-Skill Relationships

* @Group cases into
equal case count
bins shown by
the blue lines

Absolute Ensemble-Mean Error [F]

Ensemble-Member Standard Deviation [F]



Developing Spread-Skill Relationships

For each bin
calculate the
ensemble-mean
standard error
and the average
ensemble-
member standard
deviation

Shown by the red
triangles

Absolute Ensemble-Mean Error [F]

Ensemble-Member Standard Deviation [F]

Ensemble-Mean Standard Error [F]



Developing Spread-Skill Relationships

* Fit aregression
line to the
ensemble-mean
standard error
values

* The regression
line is the spread-
skill relationship

Absolute Ensemble-Mean Error [F]

Ensemble-Member Standard Deviation [F]

Ensemble-Mean Standard Error [F]
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Example Spread-Skill Relationships
192-h 2-m Temperature, Cool Season

Billings,
Montana

A z
_ 7 Baltimore,
Maryland

, 7 Seattle,
Washington
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Spread Verification

e Cool Season 2-m temperature forecasts

* Cross validated using 3 years of NAEFS forecasts
— 1 October 2007 — 31 March 2010
— 335 Stations, CONUS, Alaska, Hawaii, and Puerto Rico

* Bias Corrected Rank Sorted Forecasts (BC-Sorted)
— Baseline for spread comparison
— Use direct model output (DMO)

— Correct distribution center but preserver original
ensemble member spread.
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PIT Histograms,
120-h 2-m Temperature

BC-Sorted Spread-Skill
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Squared Bias in Relative Frequency

2-m Temperature,
335 Stations, Cool Season

——Spread-Skill

- BC-Sorted

0 24 48 72 96 120 144 168 192 216 240 264
Projection [h]




Spread-Error Verification Diagrams

120-h Temperature,
335 Stations

Spread-Skill
BC-Sorted
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Spread-Error Verification Diagrams
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120-h Temperature,
Baltimore, Maryland

Spread-Skill
BC-Sorted

Fcst. Std. Dev. [F]
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Spread-Error Verification Diagrams
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120-h Temperature,
Billings, Montana

Spread-Skill
BC-Sorted

Fcst. Std. Dev. [F]
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Spread-Error Verification Diagrams
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120-h Temperature,
Atlanta, Georgia

Spread-Skill
BC-Sorted

Fcst. Std. Dev. [F]
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Current Efforts

e Spread calibration testing

* Second implementation
— Wind speed
— Apparent temperature
— PQPF
— Hawaii grids

* Bayesian Model Averaging
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