Reforecast/hindcast

Yuejian Zhu

EMC/NCEP/NOAA

Reforecast/hindcast for forecast calibration

• Both ESRL and NCEP agree:

- Collaborate to each other for reforecast and calibration
- Reforecast will add values to our forecast
- The values depend on
 - Reforecast sample size (historical) more is better
 - Ensemble size larger is better
- Looking for optimal design by considering the resources
- There are different strategic plans for ESRL and NCEP
 - ESRL:
 - Find resource to run past 30 years ensemble reforecast at once
 - Cost similar to NCEP/CCS/P6 full machine for half year (approximately)
 - Disk space and storage (huge ?)
 - Operation is not doable full cost, optimal benefit (assume)
 - Only calibrate precipitation for HPC (could be extended to other variables)
 - · Benefits will be decreased year by year when model upgrading
 - NCEP:
 - Design to run **real time** reforecast for past 10 years (or 5 years) ensemble control only, using NCEP best reanalysis (just finished).
 - Option 1: running 10 years (10 reforecast for each cycle) cost 50% of current GEFS
 - Option 2: running 5 years (5 reforecast for each cycle) cost 25% of current GEFS
 - Operation is doable, minimum the cost, maximum the benefit
 - Calibrate many forecast elements include precipitation
 - Support all service centers include HPC
 - Support THORPEX proposal for NAEFS products generation
 - The similar design from ECMWF real time reforecast

Side by side comparison for cost and benefit

ESRL's plan can not keep highest performance by model upgrade every year NCEP's plan could guarantee the good performance continuously, operationally

Raw, Optimal & Actual Bias Corrected Ensembles

