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Forecast Evaluation

• NWP forecasts use numerical analysis as a proxy for the truth.

Studies rely on this because

— Truth is unknown and analysis is the best representation 

of the atmosphere at any given time

— Observations are not sufficient to assess all (3D) fields

— Analysis errors << medium range forecast errors

• Bad symptoms of using analysis as proxy for the truth

— Skill scores depend on choice of verifying analysis 

— Errors are underestimated in regions devoid of data or 

where DA schemes give little weight to observations
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Forecast Evaluation (2)

• Candille and Talagrand (2004, 2008)

— Rewrite skill scores considering uncertainty in the 

verifying field

— Skill scores degrade when verifying field uncertainty is 

taken into account 

• Bowler (2006, 2008)

— Partitions forecast errors into forecasts errors against 

the truth and the observational uncertainty

— Skill scores systematically degrade
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Estimation of analysis errors
• Analysis errors are scheme 

dependent

• They correlate with 

Background errors

• Difficult to attribute errors 

to either the analysis method 

or the forecast model

• Simmons and Hollingsworth (2002) use mean square 

differences, d2, of ECMWF and MetOffice analyses.
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It is solved by assuming that the ratio of  a1 and a2, as well as c12 , are the same as 

the ratio and correlation from short range forecast errors (denoted by x24h): 

where a1, a2 analysis errors  and c12, the pattern 

correlation between a1 and a2 , are unknown. 
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Estimation of analysis errors (2)

• Needed to determine amplitude of ensemble perturbations

— Breeding and ET at NCEP use climatology of 500hPa of short range

forecast errors

— Ensemble schemes do not need the full error covariance matrix 

• Modern DA schemes can compute analysis errors but are 

computationally expensive in global variational assimilation 

schemes

• An analysis estimation method is useful if it is

—computationally inexpensive

—conservative. That is, the estimated error is larger than the real error 

to prevent filter divergence

—sensitive to observations. That is, it reflects the spatial variance 

reduction due to observations
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• Define the perceived forecast error variance, d2, as the 

squared difference between a forecast, F, and an analysis, 

A, at the verifying time: 

))((2)()()(
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where ρfa is the correlation between true forecast error and true 

analysis error at the verifying time; x and xa are the true forecast errors 

and true analysis errors, respectively.

Perceived forecast errors

• Decomposing it into terms involving the true state, T:
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• This is the set of equations to solve

where L denotes the forecast lead time. 

• Functional analysis problem

• Unknown, flow-dependent functions: xL, x0 and ρ and 

noisy measurements of d

Perceived forecast errors (2)
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• Stage 1 of this study neglects flow-dependency and uses 

historical data to obtain robust estimates of the unknowns.

• Will provide sensible and minimal number of assumptions
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• Small initial errors grow exponentially and saturate following 

a logistic function.

— Theoretical considerations; spread of ensembles; error growth of

simplified models. 

— Departures from this evolution of errors will be attributed to model 

errors, which will be modeled with another continuous function

• Correlation decreases on each analysis cycle at a power rate:

ρm = (ρ1)
m ,m=2,..M

where ρ1 is the correlation at 6h lead time, ρ2 =(ρ1)2 is the correlation 

at 12h lead time, ρ3 = ρ1 ρ2 , is the correlation at 18h, etc. Only one 

parameter (ρ1) needs to be determined.

Assumptions to simplify the problem
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Estimation Procedure
• In a logistic forecast model, four parameters are estimated:  Initial error (x0), 

error growth (α), saturation error (s
∞

), and 6h lead-time correlation (ρ1)
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and so on

• For data points L larger than 4, the set of equations becomes overdetermined. 

It is solved by minimizing the following cost function

...,18,12,6),ˆmax(
122

hhhiwddJ iii =⋅−=
−

where 
ce

cs
x

LL
+

⋅
=

⋅−

∞

α

03

3

1

2

0

2

3

2

3
2ˆ xxxxd ρ−+=

and )/(
00

xsxc −=
∞

• Unless the saturation is known, the calculations will be made using an 

exponential function to model the forecast error to be consistent with the 

assumptions made (i.e., error is local at short leads). In this case, only x0 , α and

ρ1 are determined, and the forecast error at lead L is: L
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Tests with the Lorenz 63 model
Experimental setup: Perfect model scenario

• Produce “nature” time series of size N=2x104, with the usual Lorenz 3-variables params

• Produce “observations” from this nature by adding to the true state a value drawn 

randomly from a normal distribution with mean zero and standard deviation σo. 

• Assimilate observations every 15 time steps using a 3DVar scheme with a fixed 

background error covariance generated from a different long time series of (perfect) 

forecasts using the NMC method. We use a tuning coefficient to modify amplitude of B.

• Use the analysis as initial conditions to produce forecasts out to 40 DA cycle units

Small analysis error variance Large analysis error variance
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• Measured perceived errors, d (in 

red) are modeled with ^d (in dotted 

green) by minimizing the cost 

function: 

• Resulting parameters: [x0 ,  α,  ρ1]

• These parameters are substituted in the 

exponential equation to create the true 

modeled analysis and forecast errors (in 

black)

leadiwddJ iii =⋅−=
−
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Experimental results
•Perfect model experiment provides: 

• True forecast errors (blue line), 

• Perceived forecast errors (red line)

• Analysis errors (dotted blue line)

• Underestimation of true forecast errors by the 

perceived errors
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Error correlation

• Estimated correlation dies-off 

similarly as the true correlation.

• This case is well tuned so the DA 

scheme is able to extract information 

independent from the first guess. 

• Correlation is too high, probably 

indicating that the scheme, which is not 

well calibrated, relies heavily on the FG.

• The shape of the decaying correlation is 

different from that of the estimated 

correlation.
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CMC

Forecast performance intercomparison

FNMOC

Exponential function fitting. 500hPa height. NH area average. fall 2008

ECMWF

GFS
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GFS

Forecast performance intercomparison
CMC

FNMOCECMWF
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• Right panel: Estimated A 

error (f0) is slightly 

overestimated

• Left panel: DA assimilates 

enough new information 

(from obs) to reduce 

correlation with forecast 

errors

• Right panel: Both A error 

and F errors are 

overestimated.

• Left panel: High 

correlation indicates not 

enough new observation 

in the DA scheme 

Point  in the Extratropics

Point  in the tropics 

GFS 500 hPa height data. Two gridpoints
Logistic function fitting
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GFS 850 hPa U-component Tropics
• Complex perceived errors can be fit with more sophisticated functions. Here the 

use of 7 parameters (logistic + saturating exponential functions) is used in a two 

steps process. 

• In the first step, the short lead data points are fit to a saturating exponential: 

•In the second step, the parameters obtained in step 1 are prescribed in the 7 

parameter function using many more data points
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Points along 40o N. Total energy error variance data

Three points chosen

• Assume exponential growth

• Minimization of cost function with 

L
∞

Norm

• First guess of the minimization 

procedure u0=[x0  α0 ρ0] varying

x0=[1.5 to 6.5] and ρ0=[0.05 to 0.5],

and α0=0.15

For all cases shown here:

Purpose: Asses whether the method 

captures the spatial characteristics of 

the variance reduction obtained by 

the observations
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Point at 135W west (P. Ocean) Point at 122.5W (W. coast) Point at 110W (R. Mountains)

Fitting model: Exponential

Fewer observations over ocean. 

Forecast errors are underestimated. 

Correlation is high. 

Sufficient observations over land. 

Forecast errors are uncorrelated to 

analysis errors
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Points along 190W. Total energy error variance data

6hr

• Perceived errors for different latitudes 

from 60S to 60N

• 500hPa Total Energy errors

• Generally good fit

• Cost function computes parameters of all 

points at once. This allows some 

smoothing (not done yet)
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7-parameter fitting curve: partitioning initial and model-related error
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Concluding Remarks

• A method to estimate analysis and forecast error based on minimal 

assumptions is introduced. 

• The method assumes that small errors grow exponentially, that 

errors at short lead time are local and that correlation of errors decay 

following a power law

• The method was tested in the 3-variables Lorenz model in a perfect 

model scenario. 

• Results show accurate estimation of analysis errors and less accurate 

but still good estimate of short lead forecast errors

• The method fails where assumptions are not met such that when the 

correlation of errors does not decay following a power law

• The method has been applied to gridpoints in the extratropics and in the 

tropics. For the 500hPa height field, the point in the extratropics is close to 

the perceived error; in the tropics the errors are underestimated.
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•With the method it is feasible to intercompare the 

performance of operational DA systems. Correlation of errors is 

a major diagnostic parameter to assess the performance of DA 

systems.  It is shown that the ECMWF does have a superior DA 

system as the correlation is much smaller.

• More complex perceived error growth is addressed with a 7-

parameter function. The fitting is excellent and allows 

partitioning of the two components of error growth (internal 

and drift).

• The method captures the geographical change in variance 

reduction due to observations (ocean-land) contrast

Concluding Remarks
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Backup slides
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Optimization procedure (continuation):

• the weights wi in (6) are introduced to make the fitting more accurate where 

the sampling standard error of the mean (SEM) is smaller, which is usually at 

short lead times.

where
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s = sample standard deviation, N = sample size and r = autocorrelation

• The minimum of (6) is found using the Nelder-Mead Simplex method available in 

Matlab (Reference: Lagarias, J.L., J. A. Reeds, M.H. Wrights and P.E. Wright (1998): 

Convergence properties of the Nelder-Mead Simplex Method in Low dimensions, 

SIAM J. Optim., 9, 112-147)

(7)
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GFS CMC

ECMWF FNMOC

Forecast performance intercomparison
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GFS CMC

ECMWF FNMOC

Forecast performance intercomparison
N.Hemisphere 500 hPa height field 



28

GFS 500 hPa height data. N.H average
• Four months of data, averaged over the N. Hemisphere provide a reliable 

estimate of the expected error variances.


