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Forecast Evaluation

e NWP forecasts use numerical analysis as a proxy for the truth.
Studies rely on this because
— Truth is unknown and analysis is the best representation
of the atmosphere at any given time
— Observations are not sufficient to assess all (3D) fields
— Analysis errors << medium range forecast errors

e Bad symptoms of using analysis as proxy for the truth
— Skill scores depend on choice of verifying analysis
— Errors are underestimated in regions devoid of data or
where DA schemes give little weight to observations



Forecast Evaluation (2)

e Candille and Talagrand (2004, 2008)
— Rewrite skill scores considering uncertainty in the
verifying field
— Skill scores degrade when verifying field uncertainty is

taken into account

e Bowler (2006, 2008)
— Partitions forecast errors into forecasts errors against

the truth and the observational uncertainty

— Skill scores systematically degrade



Estimation of analysns errors

e Analysis errors are scheme
dependent

e They correlate with
Background errors

e Difficult to attribute errors
to either the analysis method

or the forecast model \e? i
e Simmons and Hollingsworth (2002) use mean square

differences, d?, of ECMWF and MetOffice analyses.

2 2 2 where a,, a, analysis errors and c,,, the pattern
d”=a; +a, —2a,a,c D -
1 2 1772712 correlation between a; and a,, are unknown.

It is solved by assuming that the ratio of a, and a,, as well as ¢,,, are the same as

the ratio and correlation from short range forecast errors (denoted by x2#):
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Estimation of analysis errors (2)

e Needed to determine amplitude of ensemble perturbations

— Breeding and ET at NCEP use climatology of 500hPa of short range
forecast errors
— Ensemble schemes do not need the full error covariance matrix
e Modern DA schemes can compute analysis errors but are
computationally expensive in global variational assimilation

schemes

e An analysis estimation method is useful if it is
—computationally inexpensive
—conservative. That is, the estimated error is larger than the real error

to prevent filter divergence
—sensitive to observations. That is, it reflects the spatial variance

reduction due to observations



Perceived forecast errors

Define the perceived forecast error variance, d?, as the
squared difference between a forecast, F, and an analysis,

A, at the verifying time:
d* =(F - A)*
e Decomposing it into terms involving the true state, T~

d*=(F-AY=F-T)+(A-T) -2p, (F-T)A-T)
=x’ +xa2 —20. XX,

where p,, is the correlation between true forecast error and true
analysis error at the verifying time; x and x,, are the true forecast errors

and true analysis errors, respectively.



Perceived forecast errors (2)

e This is the set of equations to solve

2 2 2
d,"=x"+x, =20, x x

a

where L denotes the forecast lead time.
e Functional analysis problem

e Unknown, flow-dependent functions: x;, x,and p and
noisy measurements of d

e Stage 1 of this study neglects flow-dependency and uses
historical data to obtain robust estimates of the unknowns.
e Will provide sensible and minimal number of assumptions



Assumptions to simplify the problem

e Smallinitial errors grow exponentially and saturate following
a logistic function.

— Theoretical considerations; spread of ensembles; error growth of
simplified models.

— Departures from this evolution of errors will be attributed to model
errors, which will be modeled with another continuous function

e Correlation decreases on each analysis cycle at a power rate:
P, = (p ), m=2,.M

where p, is the correlation at 6h lead time, p, =(p,)* is the correlation

at 12h lead time, p;, =p, p,, is the correlation at 18h, etc. Only one
parameter (p,) needs to be determined.




Estimation Procedure

* In a logistic forecast model, four parameters are estimated: Initial error (x,),

error growth (a), saturation error (s.,), and 6h lead-time correlation (p,)
S C

(0]

e ‘" +c

92 2 2
where X, =

72 2 2 2
and c=x,/(s, —x,)

A

2 2 2 3
and so on

e Unless the saturation is known, the calculations will be made using an
exponential function to model the forecast error to be consistent with the
assumptions made (i.e., error is local at short leads). In this case, only x,, a and

p,; are determined, and the forecast error at lead L is: —aL
X, = X,€

e For data points L larger than 4, the set of equations becomes overdetermined.

It is solved by minimizing the following cost function
J =max(|d’ —d’|-w."), i=6h12h,18h,... .




#-component

Tests with the Lorenz 63 model

Experimental setup: Perfect model scenario

e Produce “nature” time series of size N=2x10%, with the usual Lorenz 3-variables params
e Produce “observations” from this nature by adding to the true state a value drawn
randomly from a normal distribution with mean zero and standard deviation o,

e Assimilate observations every 15 time steps using a 3DVar scheme with a fixed
background error covariance generated from a different long time series of (perfect)
forecasts using the NMC method. We use a tuning coefficient to modify amplitude of B.
e Use the analysis as initial conditions to produce forecasts out to 40 DA cycle units
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Experimental results

ePerfect model experiment provides:
e True forecast errors (blue line),
* Perceived forecast errors (red line)
e Analysis errors (dotted blue line)
e Measured perceived errors, d (in
red) are modeled with Ad (in dotted
green) by minimizing the cost

function: d’—d?|-w™), i=lead

J = max(

e Resulting parameters: [x0, a, p1]

e These parameters are substituted in the
exponential equation to create the true
modeled analysis and forecast errors (in
black)

e Underestimation of true forecast errors by the
perceived errors
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e Estimated correlation dies-off
similarly as the true correlation.

e This case is well tuned so the DA
scheme is able to extract information
independent from the first guess.
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e Correlation is too high, probably
indicating that the scheme, which is not
well calibrated, relies heavily on the FG.

e The shape of the decaying correlation is
different from that of the estimated

correlation. 13



Forecast performance intercomparison

Exponential function fitting. 500hPa height. NH area average. fall 2008
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Forecast performance intercomparison

Analysis-Forecast error Caorrelation
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variance in m

varance inm

GFS 500 hPa height data. Two gridpoints

Logistic function fitting
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yarance in m

GFS 850 hPa U-component Tropics

e Complex perceived errors can be fit with more sophisticated functions. Here the
use of 7 parameters (logistic + saturating exponential functions) is used in a two

steps process.

¢ In the first step, the short lead data points are fit to a saturating exponential:

x=x (s, —e™)

e|n the second step, the parameters obtained in step 1 are prescribed in the 7

parameter function using many more data points
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Points along 40° N. Total energy error variance data

Total energy error at S00hPa
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Fitting model: Exponential

Point at 135W west (P. Ocean) Point at 122.5W (W. coast) Point at 110W (R. Mountains)
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Points along 190W. Total energy error variance data
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7-parameter fitting curve: partitioning initial and model-related error
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Concluding Remarks

e A method to estimate analysis and forecast error based on minimal
assumptions is introduced.
e The method assumes that small errors grow exponentially, that
errors at short lead time are local and that correlation of errors decay
following a power law
e The method was tested in the 3-variables Lorenz model in a perfect
model scenario.
e Results show accurate estimation of analysis errors and less accurate
but still good estimate of short lead forecast errors
e The method fails where assumptions are not met such that when the
correlation of errors does not decay following a power law
e The method has been applied to gridpoints in the extratropics and in the
tropics. For the 500hPa height field, the point in the extratropics is close to
the perceived error; in the tropics the errors are underestimated.
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Concluding Remarks

e\With the method it is feasible to intercompare the
performance of operational DA systems. Correlation of errors is
a major diagnostic parameter to assess the performance of DA
systems. It is shown that the ECMWF does have a superior DA
system as the correlation is much smaller.

e More complex perceived error growth is addressed with a 7-
parameter function. The fitting is excellent and allows
partitioning of the two components of error growth (internal
and drift).

e The method captures the geographical change in variance
reduction due to observations (ocean-land) contrast

23
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Optimization procedure (continuation):

- the weights w; in (6) are introduced to make the fitting more accurate where
the sampling standard error of the mean (SEM) is smaller, which is usually at

short lead times.

v = SEM, 7
> SEM,
S I+(N-1)-r
where SEM, =g —— d :\/
*UN r i I—r

s = sample standard deviation, N = sample size and r = autocorrelation

® The minimum of (6) is found using the Nelder-Mead Simplex method available in
Matlab (Reference: Lagarias, J.L., J. A. Reeds, M.H. Wrights and P.E. Wright (1998):
Convergence properties of the Nelder-Mead Simplex Method in Low dimensions,

SIAM J. Optim., 9, 112-147)



Forecast performance intercomparison
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Forecast performance intercomparison
N.Hemisphere 500 hPa height field
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GFS 500 hPa height data. N.H average

e Four months of data, averaged over the N. Hemisphere provide a reliable
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