GEFS in Subversion

Dick Wobus

November 10, 2010

What does Subversion do?

Keep track of the development of a version of GEFS
(scripts, codes, parms)

Keep a complete history of changes, so that any earlier
version can be retrieved

Keep a “trunk” version, which in our case will emulate as
closely as possible the current production version, and
as many “branch” versions as we want to define

Enable us to identify differences between branches
Enable us to merge changes from one branch to another

Manage code and scripts in the manner that EMC and
NCO are adopting as standard

How have we managed versions
for the last several years?

Each version of the parallel GEFS that | create and maintain is in a directory
tree /global/save/wx20rw/s/rwLL/nwdev, where LL is a two letter version
identifier (latest version is rwit) which contains subdirectories jobs, scripts,
sorc, etc. corresponding to those under /nwprod, but containing only GEFS
scripts, codes, etc.

Additional subdirectory control contains our control scripts, which manage
jobs in place of SMS, and an sms subdirectory which contains examples of
the production SMS scripts which we are emulating

When | want to start a new version, to add a feature or to merge in features
from_some other version, | copy into a new subdirectory with new identifier
rw

You can use these versions by copying into subdirectories
/global/save/$LOGNAME/..../IDLL/nwdev where ID is your two-letter unique
identifier, for example, your initials, and LL is your two-letter version
identifier — IDLL has to contain 4 characters because parts of it are used to
create output subdirectory names and job identifiers.

| keep /global/save/wx20rw/s/doc.txt which contains one- or two-line
descriptions of each version, including the name of the version that it is
primarily based on

Recent experiments

new:

grep "rwLL__ " to select the description of one experiment
grep "rwLL" to select all references to one experiment
old:

grep "nwgeLL" to select the description of one experiment
grep "geLL" to select all references to one experiment
rwrt__ rwrq restrict large jobs to certain hours

rwrs__ rwrp change cp to mv for post restart copies

rwrr__ rwrp add RFC changes
rwrr___ rwrp current candidate for ops+fix branch

rwrg__ rwro modify fhmax and fhmaxh logic, use new fcst code

rwrp__ rwrn modify fhmax and fhmaxh logic, use prod fcst code
rwrp__ rwrn current candidate for subversion trunk

rwro___ rwrj test Dingchen's system for ensstat problem
rwrn__ rwrg clean up gefs.parm for subversion
rwrm__ rwrk RFC system to fix anomcat problem
rwrl__ rwri modify to analyze anomcat problem

rwrk__ rwri RFC system for TIGGE Il and bug fix
rwrj__ rwrg with Dingchen's mods for new fcst code
rwri__ rwrh with rwre code and other RFC changes
rwrh__ rwrg newly compiled forecast code

rwrg__ rwrc update to 201007 implementation

rwrf__ rwrc control for rwrd and rwre

rwre__ rwrd TIGGE Il + bug fixes

L atest versions
IN doc.ixt

Replacing this process with
subversion

Our process has been modified in several ways over the past 2 years so as to be
more easily managed using subversion — for example, the “environment” variable is
now dev instead of the version identifier, so that job script names do not have to
change for each version

My linear list of versions will be superseded by a single trunk version (corresponding
to current production) and a series of branch versions corresponding to upcoming
implementations and other versions | maintain for the group to use. The trunk and
branch structure will make it easier to keep track of the “family tree” of development

Any version(s) you develop will be in your own branch(es)

To run a version (current or past) you will check out a copy from subversion into a
subdirectory with a 4-letter identifier name (similar to what you would copy into now,
the control scripts require the 4-letter identifier)

After you make changes that you want to keep track of, you can commit this version
to your branch

When you or | commit an updated version, we enter a description of the change into
the log, which corresponds to the one-line entries in doc.txt

When your changes are ready to be included in a production version (or in a version
tﬁ be teited for implementation) we will merge them into one of my branches or into
the trun

Branches that | am preparing to
create

—-iX copy for mirror
~ix copy and bugs + TIGGE |

~ixes + TIGGE Il + option to run current
GFS code

Fixes + TIGGE Il + option to run current
GFS code + option to reduce resolution
after 192 hr

Resources for using subversion

Online command help: svn help

“cheat sheet” by Paul van Delst
http://www2.emc.ncep.noaa.gov/documents/EM
C.svn intro.cheatsheet.pdf (on EMC IT trouble
desk menu under documents)

Account application, on the same web page

Subversion forums
http://optimus.ncep.noaa.gov/forum/

Seminars given by Paul van Delst

