
GEFS in Subversion

Dick Wobus

November 10, 2010

What does Subversion do?

• Keep track of the development of a version of GEFS
(scripts, codes, parms)

• Keep a complete history of changes, so that any earlier
version can be retrieved

• Keep a “trunk” version, which in our case will emulate as
closely as possible the current production version, and
as many “branch” versions as we want to define

• Enable us to identify differences between branches

• Enable us to merge changes from one branch to another

• Manage code and scripts in the manner that EMC and
NCO are adopting as standard

How have we managed versions
for the last several years?

• Each version of the parallel GEFS that I create and maintain is in a directory
tree /global/save/wx20rw/s/rwLL/nwdev, where LL is a two letter version
identifier (latest version is rwtt) which contains subdirectories jobs, scripts,
sorc, etc. corresponding to those under /nwprod, but containing only GEFS
scripts, codes, etc.

• Additional subdirectory control contains our control scripts, which manage
jobs in place of SMS, and an sms subdirectory which contains examples of
the production SMS scripts which we are emulating

• When I want to start a new version, to add a feature or to merge in features
from some other version, I copy into a new subdirectory with new identifier
rwLL

• You can use these versions by copying into subdirectories
/global/save/$LOGNAME/…./IDLL/nwdev where ID is your two-letter unique
identifier, for example, your initials, and LL is your two-letter version
identifier – IDLL has to contain 4 characters because parts of it are used to
create output subdirectory names and job identifiers.

• I keep /global/save/wx20rw/s/doc.txt which contains one- or two-line
descriptions of each version, including the name of the version that it is
primarily based on

Latest versions
in doc.txt

• Recent experiments

• new:
• grep "rwLL__" to select the description of one experiment
• grep "rwLL" to select all references to one experiment

• old:
• grep "nwgeLL" to select the description of one experiment
• grep "geLL" to select all references to one experiment

• rwrt__ rwrq restrict large jobs to certain hours

• rwrs__ rwrp change cp to mv for post restart copies

• rwrr__ rwrp add RFC changes
• rwrr__ rwrp current candidate for ops+fix branch

• rwrq__ rwro modify fhmax and fhmaxh logic, use new fcst code

• rwrp__ rwrn modify fhmax and fhmaxh logic, use prod fcst code
• rwrp__ rwrn current candidate for subversion trunk

• rwro__ rwrj test Dingchen's system for ensstat problem

• rwrn__ rwrg clean up gefs.parm for subversion

• rwrm__ rwrk RFC system to fix anomcat problem

• rwrl__ rwri modify to analyze anomcat problem

• rwrk__ rwri RFC system for TIGGE II and bug fix

• rwrj__ rwrg with Dingchen's mods for new fcst code

• rwri__ rwrh with rwre code and other RFC changes

• rwrh__ rwrg newly compiled forecast code

• rwrg__ rwrc update to 201007 implementation

• rwrf__ rwrc control for rwrd and rwre

• rwre__ rwrd TIGGE II + bug fixes

Replacing this process with
subversion

• Our process has been modified in several ways over the past 2 years so as to be
more easily managed using subversion – for example, the “environment” variable is
now dev instead of the version identifier, so that job script names do not have to
change for each version

• My linear list of versions will be superseded by a single trunk version (corresponding
to current production) and a series of branch versions corresponding to upcoming
implementations and other versions I maintain for the group to use. The trunk and
branch structure will make it easier to keep track of the “family tree” of development

• Any version(s) you develop will be in your own branch(es)
• To run a version (current or past) you will check out a copy from subversion into a

subdirectory with a 4-letter identifier name (similar to what you would copy into now,
the control scripts require the 4-letter identifier)

• After you make changes that you want to keep track of, you can commit this version
to your branch

• When you or I commit an updated version, we enter a description of the change into
the log, which corresponds to the one-line entries in doc.txt

• When your changes are ready to be included in a production version (or in a version
to be tested for implementation) we will merge them into one of my branches or into
the trunk

Branches that I am preparing to
create

• Fix copy for mirror

• Fix copy and bugs + TIGGE II

• Fixes + TIGGE II + option to run current
GFS code

• Fixes + TIGGE II + option to run current
GFS code + option to reduce resolution
after 192 hr

Resources for using subversion

• Online command help: svn help

• “cheat sheet” by Paul van Delst
http://www2.emc.ncep.noaa.gov/documents/EM
C.svn_intro.cheatsheet.pdf (on EMC IT trouble
desk menu under documents)

• Account application, on the same web page

• Subversion forums
http://optimus.ncep.noaa.gov/forum/

• Seminars given by Paul van Delst

