Secondary eyewalls: Lessons learned and their presence in operational HWRF

Sergio F. Abarca¹ Federico DiCatarina², Weiguo Wang¹, Keqin Wu¹, Vijay Tallapragada¹ Acknowledge the whole HWRF team

> ¹ EMC ² FSU

Outline

- Introduction
 - What constitutes a secondary eyewall (SEs)?
 - Frequency: Nature Vs mesoscale integrations
- Relevant scientific lessons
 - Intensification
 - Mean flow & eddies
 - Balance & Unbalanced dynamics
 - SEF a progressive (!) process

• SEs in HWRF

- Edouard (2014), NASA HS3

Secondary eyewall: A structure approximately concentric to the primary eyewall characterized by a maxima in:

- a) Convective activity
- b) Tangential winds

Secondary eyewall formation

Maxima in:

- Tangential wind tendency
- Radial convergence

SEs are a common feature of intense storms

SEs are a common feature of intense storms

Not in mesoscale simulations! $\sim 6\%$ in AHW

Table 2-1: Names of AHW simulations screened for secondary eyewalls.

	Name	Maximum	Observed SE	Number of
Year		Saffir-Simpson	in nature	simulations
		category	mnature	screened
2005	Emily	4		2
2005	Katrina	5	\checkmark	7
2005	Rita	5	\checkmark	7
2005	Wilma	5	\checkmark	3
2007	Dean	5	\checkmark	3
2007	Felix	5	\checkmark	7
2008	Ike	4	\checkmark	8
2009	Bill	4	\checkmark	12
2009	Fred	3		7
2009	Gustav	4	\checkmark	4
2010	Igor	4	\checkmark	3
			Total:	60

Table 2-2: AHW simulations with secondary eyewalls analyzed in subsequent chapters.

Storm		AHW version	Microphysical scheme	Initialization		Output frequency
				[day/month]	[UTC]	[min]
Katrina 2005	K60	2.2	WSM5	27/08	00	60
Rita 2005	R60	2.2	WSM5	21/09	00	60
Katrina 2005	K10	2.1.2	WSM3	27/08	00	10
Igor 2010	R10	3.2	Thompson	11/09	00	10

Abarca (2011)

Idealized RAMS simulation

- Walko et al. (1995) microphysics (7 species)
- Louis (1979) scheme, surface fluxes
- Three domains, 24, 6, 2 km
- f-plane at 15°N
- SST 28°C
- Initial environment at rest
 - Weak mesoscale vortex
 - Gradient and hydrostatic balance
 - V_{max}=10 m s⁻¹ RMW at 75 km
 - Warm bubble, moisture perturbation

Terwey, Abarca & Montgomery (2013) Abarca & Montgomery (2013) Montgomery, Abarca, Smith, Wu & Huang (2013) Abarca & Montgomery 2014a; 2014b)

SEF only at

hr~180

Concentric eyewalls: Longer duration of higher storm intensity

Kuo et al. (2009)

2 m s⁻¹ hr⁻¹

Mean Dynamics

Balanced?Linear?

2 m s⁻¹ hr⁻¹

Mean Dynamics

Balanced?Linear?

Very MEAN dynamics

00

Basic principle of hurricane intensification

 $M = rv + r^2 f/2$

What causes radial convergence of M?

12 Montgomery and Smith (2013)

Radial convergence of M:

- Above the BL (M~conserved)
 •Radial gradient of diabatic heating
 - •Convective structures
 - •Presence of surface moisture fluxes
 - •Described in terms of *balanced dynamics*

•Within the BL (M~ not conserved)

- •Friction is important
- •In a coupled system of equations!
- •Presence of supergradient winds

Du 1 dpDt ∂v ∂t Dwdn Dt

Thermal wind equation

Vortex

- Subject to diabatic/frictional forcing
- Develop a secondary circulation to remain in balance

z=1,512m

Abarca and Montgomery (2013)

SEF... now how about ERC?

Azimuthally-averaged tangential velocity [m s⁻¹], z=787m

Abarca and Montgomery (2014b)

Abarca and Montgomery (2014b)

Abarca and Montgomery (2014b)

Large radii

hr 18, 190-200 km radius

Approximate Ekman-like balance =)

Secondary eyewall formation

hr 18, 110-120 km radius

Ekman-like balance is not found =(

Decaying double-eyewalled storm

9/16 15:06 UTC - 9/17 08:28 UTC

Decaying double-eyewalled storm

Contours every 5 m s^{-1} ์บ СЛ Height [km] -20-<mark>5</mark>0 S ŝ с, ъ فن Radius [km]

Radial location of dropsondes

Global Hawk

Secondary eyewall formation

Federico DiCatarina, FSU

Conclusions

- Secondary eyewalls are:
 - Common in nature
 - Rare in mesoscale integrations (not only in HWRF)
- Secondary wind maxima emerges
 - Within the BL
 - After supergradient winds
 - Fundamentally Non-linear region of the storm
- Balanced dynamics alone do not capture SEF or ERC spinup
- Operational HWRF generates SE

Recommendations

- Storm growth
 - Radial expansion of the tangential wind field
- Secondary eyewall formation

- i.e. not in secondary eyewalls per se