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Overview

● Other HWRF automation systems
● Overview of the Rocoto + pyHWRF system
● How to configure.
● How to run.
● Configuring by Command Line
● Where is everything?
● Troubleshooting
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HWRF Automation Systems

ecFlow

J-Jobs

ex-Scripts

ush

kick_scripts

J-Jobs

ex-Scripts

ush

Human Operator HHS

NCO EMC

Low-level logic

High-level logic

Set up environment for NCO
Does nothing in EMC workflow

Inter-job dependences
within one forecast cycle

Inter-cycle dependencies, 
Failure recovery
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HWRF Automation Systems
ecFlow kick_scripts+HHS

Job submission A central server 
submits jobs.  Makes 
ecFlow unusable to 
us.

Within a cycle: each job 
submits the next.
HHS submits first job in each 
cycle.

Dependency
tracking

Central server tracks 
dependencies.

Have to use wait loops.  
Limited due to wallclock.

Multi-year tests Not designed for this. Excellent, well-tested.

Failure detection Based on exit status, 
files and runtime.

Based on file availability.

Failure reporting Graphical and logging Logging, web-based, email-
based.

Failure recovery 24/7 human operators 
press buttons to 
resubmit failed jobs.

Completely manual.
No 24/7 operators, so things 
break in real-time.

Configurability None. Easy: modify hwrf_driver
4



  

HWRF Automation Systems

● Jobs submitting jobs does not work:
Relocate
FGAT T-3

Relocate
FGAT T-0

Relocate
FGAT T+3

GSI D02

GSI D03

Ocean Init

Boundary
Conditions

Merge

Forecast

DA 001

DA 002

DA 040

● ecFlow can handle this.
● kick_scripts cannot
● Have to use wait loops
● Fails frequently when cluster is 

busy.

GFS analysis
wrfinput_d01
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HWRF Automation Systems

● Need automated failure recovery
– ecFlow – requires human intervention

● But you get to press buttons!
● There are sad-face icons when jobs fail!

– kick_scripts+HHS – requires human intervention
● Scripts instead of buttons.
● Text files instead of sad-face icons.

– Major problem for real-time workflows and large 
tests.
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Rocoto+pyHWRF

● What is Rocoto?
– Formerly the NOAA Workflow Manager

– Lead dev = Chris Harrop in NOAA ESRL

– Runs most of the HFIP forecasting and 
retrospective systems over the past few years.

● XML workflow description
● Run “rocotorun” over and over to track jobs 

and dependencies.
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Rocoto+pyHWRF System

ecFlow

ksh J-Jobs

Python ex-Scripts

Python ush

kick_scripts

ksh J-Jobs

Python ex-Scripts

Python ush

Human Operator HHS

NCO Old

XML

Python ex-Scripts

Python ush

Rocoto

New
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Rocoto+pyHWRF System

ecFlow

J-Jobs

Python ex-Scripts

Python ush

Human Operator

NCO

XML

Python ex-Scripts

Python ush

Rocoto

New
● Advantages:

– Rocoto and ecFlow have
similar workflow management
capabilities

– Automated failure recovery
– EMC, DTC, NCO have an

identical system below the J-Jobs layer
● XML can be easily translated to J-Jobs for NCO.
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Rocoto+pyHWRF System
ecFlow Rocoto

Job submission A central server 
submits jobs.  Makes 
ecFlow unusable to us.

A central database tracks 
jobs.  Repeat a command 
every ~2-10 minutes to submit 
jobs (usually via CRON).

Dependency
tracking

Central server tracks 
dependencies.

Repeat a command every ~2-
10 minutes to check 
dependencies.

Multi-year tests Not designed for this. Excellent, well-tested.

Failure detection Based on exit status, 
files and runtime.

Based on exit status, files and 
runtime.

Failure reporting Graphical and logging Manual and logging

Failure recovery 24/7 human operators 
press buttons to 
resubmit failed jobs.

Automated resubmission.
Can also manually 
intervene.

Configurability None. Add arguments to 
run_hwrf.py
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How to Configure
Simple Config

● Check out and compile:
– Check out from Subversion

● GSI is no longer checked out automatically.

– Load modules, set $PNETCDF, etc.

– cd sorc ; make ; make install

● Link fix files.
● Set up parm/system.conf

– Replaces most of hwrf_driver.sh configuration

– Templates in system.conf.jet, etc.

– Fairly self-explanatory

● Run run_hwrf.py with arguments every 2-10 minutes.
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How to Configure
Physics Schemes, GSI, etc.

● parm/hwrf.conf, parm/hwrf_basic.conf
– Nearly everything is configured from this file.

– Only exception is POM, which is not configurable.

● Example:

[namelist_3km]

…

physics.cu_physics=0

● Change to 84 to enable SAS in inner domain.
– Will set cu_physics=84 in &physics for all WRF runs.
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How to Configure
Paths

● parm/system.conf
– Most paths are set here.

– [config] CDSCRUB – base scrub directory

– [config] CDNOSCRUB – where to put tracks

– [config] CDSAVE – where to find scripts

– [config] input_catalog – which input source to use.

– [config] archive – how and where to archive results

● parm/hwrf_input.conf
– Where to find input data.  

– system.conf's [config] input_catalog decides which set of input 
sources to use (jet_fcst, zeus_hist, etc.)
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How to Configure
Job Cards, Throttling

● rocoto/sites/*.ent – site-specific (uJet, vJet, Zeus) configuration
● rocoto/tasks/*.ent – configure specific tasks
● rocoto/hwrf_workflow.xml.in – configure throttling

– CYCLE_THROTTLE – maximum number of active cycles

– COM_SCRUB_TIME – seconds after hwrf_output is done at which to scrub COM.  
Will also wait until COM is no longer needed.

– WORK_SCRUB_TIME – seconds after hwrf_output is done at which to scrub work 
areas.  Will also wait until all other jobs are done except com scrubber and special 
“completion” job.

– taskthrottle=”20” – maximum number of jobs to run at a time.

● rocoto/cycling_condition.ent – inter-cycle relocate job dependency
● rocoto/env_vars.ent – environment variables to set for all jobs on all 

platforms.

14



  

How To Run
Initial Start

● First, set up the database and run rocoto once 
by command line:
– cd /path/to/myHWRF/rocoto

– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 
2014 19w HISTORY config.EXPT=myHWRF

● If all goes well, first job starts.
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How To Run
Continue the Workflow

● After first run_hwrf.py succeeds, rerun with -f 
added, every five minutes or so:
– ./run_hwrf.py -f -w 19w2014.xml -d 19w2014.db 

2014 19w HISTORY config.EXPT=myHWRF

● The -f tells run_hwrf that you are continuing an 
existing workflow.

● Do this in a CRON job.
– there are other ways, but that is the safest
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How To Run
Arguments to run_hwrf.py

● ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 
2014 19w HISTORY config.EXPT=myHWRF

● -w 19w2014.xml
– Rocoto workflow description AND cycle list

● -d 19w2014.db
– Used by Rocoto for bookkeeping

● 2014
– Cycles to run
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How To Run
Arguments to run_hwrf.py

● Instead of “2014”
– 2014100100-2014100718 – range of cycles
– 2014100500 – a single cycle

– 2014100500 2014100518 – two specific cycles

● Can also specify forecast ensemble members:
– 01-20 – run for all GEFS members from 1 to 20

– 03 05 07 09 – run for these four
– 01-07 13-15 – run for these ten

– Must be before storm ID argument.
– Not merged to trunk yet.  Soon...
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How To Run
Arguments to run_hwrf.py

● ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 2014 
19w HISTORY config.EXPT=myHWRF

● 19w
– Storm to run

● HISTORY
– HISTORY=retrospective, FORECAST=real-time

– Affects input sources, whether we wait for data

● config.EXPT=myHWRF
– Sets many paths.  Must be name of parent of rocoto, 

ush, parm, etc.
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Configuring By Command Line

● Any configuration option can be overridden by 
the command line when running run_hwrf.py:
– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 

2014 19w HISTORY config.EXPT=myHWRF 
config.run_gsi=no archive=disk:/arch/out.tar.gz

● No need to edit config files!
● Just make sure you run the same arguments 

each time.  (Changing mid-storm is bad.)
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Configuring By Command Line

● You can also send a config file:
– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 

2014 19w HISTORY config.EXPT=myHWRF 
../parm/hwrf_wpac_2013.conf

● Puts many configuration changes in one file
● Easy way to have many configurations in one 

branch.
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Where is Everything?

● EMC, DTC and others had different locations 
for various components.

● Standardized locations were chosen.
● Original EMC locations were nonsensical.

22



  

Where is Everything?

● $WORKhwrf
– runwrf – forecast execution directory
– gsi_d0* – GSI
– tracker.* – trackers

– fgat.(date) – fgat initialization

– gdas.(date) – merge

– gfsinit – init based on GFS

– ensda – DA ensemble based on GFS ENKF

– regribber – GRIB processing

– intercom – more on this later
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Where is Everything?

● inside fgat.(date) and gfsinit:
– wps – run directory for analysis time WPS

– prep – prep_hybrid

– realinit – initialization-length real_nmm

– wrfanl – creation of wrfanl files

– wrfghost – creation of wrfghost files

– realfcst – creation of wrfbdy file

– wpsfcst – forecast-length WPS, if enabled
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Where is Everything?

● intercom
– For communicating between HWRF components

– EMC ksh system had components copying files 
into and out of each other's directories

● caused many bugs, especially with init and GSI jobs

– Instead: if another job needs it, put it in intercom
● except for runwrf directory
● forecast job cannot run Python script in parallel for file 

delivery
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Where is Everything?

● jlogfile – combined logging from all cycles of 
all storms
– /ptmp/$USER/myHWRF/2014100500/19W/

– /ptmp/$USER/myHWRF/log/jlogfile

● Greatly improved over prior years' jlogfile 
logging.

● Same purpose and contents of NCO jlogfile
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Troubleshooting
Overview

● The jlogfile
● Querying the Rocoto Workflow

– rocotostat

– rocotocheck

– “DEAD” jobs

● rocotorewind: resubmit jobs
● storm1.conf: change a cycle's configuration
● manually run parts of the workflow
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Troubleshooting
jlogfile

● Workflow status questions?
– Why did my job fail?

– Was this cycle a cold start?

– When did I last run Rocoto?

– Did I start 19W yet?

– Has my 08L forecast reached hour 48 yet?

● LOOK IN THE JLOGFILE
– All significant events are logged.
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Troubleshooting
rocotostat

● Has Rocoto given up on any jobs yet?
● What jobs and cycles have completed?

– rocotostat -w 19w2014.xml -d 19w2014.db -c ALL
– Jobs that failed too many times will be listed as 

“DEAD”

– Jobs that have completed successfully are listed as 
“SUCCESSFUL”

– The special “completion” job marks the end of the 
workflow for that cycle

29



  

Troubleshooting
rocotocheck

● Why is Rocoto not submitting this job?
– rocotocheck -w 19w2014.xml -d 19w2014.db -c 

201410041800 -t gsi_d02_E99

– NOTE: 12 digit cycle with minutes=00

– Look in rocotostat output for task names (ie.: 
gsi_d02_E99)
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Troubleshooting
Resubmitting Jobs: rocotorewind

● Rocoto, please resubmit these jobs.
– rocotorewind -w 19w2014.xml -d 19w2014.db -c 

201410041800 -c 201410050000 -t 
atmos_forecast_E99 -t unpost_E99 -t post_E99 -t 
post_helper_E99

– NOTE: 12 digit cycle (minutes=00)

– You can specify multiple tasks and cycles.
– DISABLE YOUR CRON JOB before doing this if you 

are going to run rocotorewind multiple times, or it may 
submit jobs in between.
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Troubleshooting
Where are the rocoto* commands?

● Don't use the Jet/Zeus default Rocoto!!
– We have our own Rocoto for now.

● Look in ush/hwrf_pre_job.ksh.inc.
– varies based on the system

– may change in the future

● Add them to your $PATH:
– sh: export PATH=/path/to/rocoto/bin:$PATH

– csh: setenv PATH /path/to/rocoto/bin:$PATH
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Troubleshooting
Changing a Cycle's Configuration

● Changing parm/*.conf and run_hwrf.py 
arguments does not affect started cycles.

● $COMhwrf/storm1.conf
– Contains the cycle's configuration.

– Result of merging many conf files into one during 
exhwrf_launch.py job.
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Troubleshooting
Manually Running Parts of the Workflow

● Useful for debugging.
● Step 1: get an interactive job:

– qsub -I -q debug -l partition=ujet:tjet:sjet:vjet:njet -A 
hwrfv3 -l procs=32 -d . -l walltime=00:30:00

● Step 2: set up environment:
– bash

– . /path/to/com/2014100418/19W/storm1.holdvars.txt

– export TOTAL_TASKS=32 (or whatever you requested)

– export PYTHONPATH=$USHhwrf
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Troubleshooting
Manually Running Parts of the Workflow

● Step 3:
– python

● Step 4:
– import produtil.setup, hwrf_expt
– produtil.setup.setup()
– hwrf_expt.init_module()

● Step 5: run whatever you were going to run.
● Example: run the tracker:

– hwrf_expt.tracker.run()
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Troubleshooting
Manually Running Parts of the Workflow

● Step 3:
– python

● Alternate Step 4:
– import produtil.setup, hwrf_expt, logging
– produtil.setup.setup(level=logging.DEBUG)
– hwrf_expt.init_module()

● Step 5: run whatever you were going to run.
● Example: run the tracker:

– hwrf_expt.tracker.run()
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Troubleshooting
Manually Running Parts of the Workflow

● Alternate Step 3-5: run an ex-script instead of 
running python:
– export TOTAL_TASKS=9

– $EXhwrf/exhwrf_ocean_init.py

● Some ex-scripts expect environment variables 
that specify the forecast hour, domain or input 
model.  See $HOMEhwrf/rocoto/tasks/*.ent.

37



  

Future Developments

● check_hwrf.py – summarize status of HWRF 
by examining logs and rocotostat

● Add wildcards to rocotorewind

● still taking feature requests
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