

Rocoto-Based HWRF Automation
Sam Trahan

October 16, 2014

Overview

● Other HWRF automation systems
● Overview of the Rocoto + pyHWRF system
● How to configure.
● How to run.
● Configuring by Command Line
● Where is everything?
● Troubleshooting

2

HWRF Automation Systems

ecFlow

J-Jobs

ex-Scripts

ush

kick_scripts

J-Jobs

ex-Scripts

ush

Human Operator HHS

NCO EMC

Low-level logic

High-level logic

Set up environment for NCO
Does nothing in EMC workflow

Inter-job dependences
within one forecast cycle

Inter-cycle dependencies,
Failure recovery

3

HWRF Automation Systems
ecFlow kick_scripts+HHS

Job submission A central server
submits jobs. Makes
ecFlow unusable to
us.

Within a cycle: each job
submits the next.
HHS submits first job in each
cycle.

Dependency
tracking

Central server tracks
dependencies.

Have to use wait loops.
Limited due to wallclock.

Multi-year tests Not designed for this. Excellent, well-tested.

Failure detection Based on exit status,
files and runtime.

Based on file availability.

Failure reporting Graphical and logging Logging, web-based, email-
based.

Failure recovery 24/7 human operators
press buttons to
resubmit failed jobs.

Completely manual.
No 24/7 operators, so things
break in real-time.

Configurability None. Easy: modify hwrf_driver
4

HWRF Automation Systems

● Jobs submitting jobs does not work:
Relocate
FGAT T-3

Relocate
FGAT T-0

Relocate
FGAT T+3

GSI D02

GSI D03

Ocean Init

Boundary
Conditions

Merge

Forecast

DA 001

DA 002

DA 040

● ecFlow can handle this.
● kick_scripts cannot
● Have to use wait loops
● Fails frequently when cluster is

busy.

GFS analysis
wrfinput_d01

5

HWRF Automation Systems

● Need automated failure recovery
– ecFlow – requires human intervention

● But you get to press buttons!
● There are sad-face icons when jobs fail!

– kick_scripts+HHS – requires human intervention
● Scripts instead of buttons.
● Text files instead of sad-face icons.

– Major problem for real-time workflows and large
tests.

6

Rocoto+pyHWRF

● What is Rocoto?
– Formerly the NOAA Workflow Manager

– Lead dev = Chris Harrop in NOAA ESRL

– Runs most of the HFIP forecasting and
retrospective systems over the past few years.

● XML workflow description
● Run “rocotorun” over and over to track jobs

and dependencies.

7

Rocoto+pyHWRF System

ecFlow

ksh J-Jobs

Python ex-Scripts

Python ush

kick_scripts

ksh J-Jobs

Python ex-Scripts

Python ush

Human Operator HHS

NCO Old

XML

Python ex-Scripts

Python ush

Rocoto

New

8

Rocoto+pyHWRF System

ecFlow

J-Jobs

Python ex-Scripts

Python ush

Human Operator

NCO

XML

Python ex-Scripts

Python ush

Rocoto

New
● Advantages:

– Rocoto and ecFlow have
similar workflow management
capabilities

– Automated failure recovery
– EMC, DTC, NCO have an

identical system below the J-Jobs layer
● XML can be easily translated to J-Jobs for NCO.

9

Rocoto+pyHWRF System
ecFlow Rocoto

Job submission A central server
submits jobs. Makes
ecFlow unusable to us.

A central database tracks
jobs. Repeat a command
every ~2-10 minutes to submit
jobs (usually via CRON).

Dependency
tracking

Central server tracks
dependencies.

Repeat a command every ~2-
10 minutes to check
dependencies.

Multi-year tests Not designed for this. Excellent, well-tested.

Failure detection Based on exit status,
files and runtime.

Based on exit status, files and
runtime.

Failure reporting Graphical and logging Manual and logging

Failure recovery 24/7 human operators
press buttons to
resubmit failed jobs.

Automated resubmission.
Can also manually
intervene.

Configurability None. Add arguments to
run_hwrf.py

10

How to Configure
Simple Config

● Check out and compile:
– Check out from Subversion

● GSI is no longer checked out automatically.

– Load modules, set $PNETCDF, etc.

– cd sorc ; make ; make install

● Link fix files.
● Set up parm/system.conf

– Replaces most of hwrf_driver.sh configuration

– Templates in system.conf.jet, etc.

– Fairly self-explanatory

● Run run_hwrf.py with arguments every 2-10 minutes.
11

How to Configure
Physics Schemes, GSI, etc.

● parm/hwrf.conf, parm/hwrf_basic.conf
– Nearly everything is configured from this file.

– Only exception is POM, which is not configurable.

● Example:

[namelist_3km]

…

physics.cu_physics=0

● Change to 84 to enable SAS in inner domain.
– Will set cu_physics=84 in &physics for all WRF runs.

12

How to Configure
Paths

● parm/system.conf
– Most paths are set here.

– [config] CDSCRUB – base scrub directory

– [config] CDNOSCRUB – where to put tracks

– [config] CDSAVE – where to find scripts

– [config] input_catalog – which input source to use.

– [config] archive – how and where to archive results

● parm/hwrf_input.conf
– Where to find input data.

– system.conf's [config] input_catalog decides which set of input
sources to use (jet_fcst, zeus_hist, etc.)

13

How to Configure
Job Cards, Throttling

● rocoto/sites/*.ent – site-specific (uJet, vJet, Zeus) configuration
● rocoto/tasks/*.ent – configure specific tasks
● rocoto/hwrf_workflow.xml.in – configure throttling

– CYCLE_THROTTLE – maximum number of active cycles

– COM_SCRUB_TIME – seconds after hwrf_output is done at which to scrub COM.
Will also wait until COM is no longer needed.

– WORK_SCRUB_TIME – seconds after hwrf_output is done at which to scrub work
areas. Will also wait until all other jobs are done except com scrubber and special
“completion” job.

– taskthrottle=”20” – maximum number of jobs to run at a time.

● rocoto/cycling_condition.ent – inter-cycle relocate job dependency
● rocoto/env_vars.ent – environment variables to set for all jobs on all

platforms.

14

How To Run
Initial Start

● First, set up the database and run rocoto once
by command line:
– cd /path/to/myHWRF/rocoto

– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db
2014 19w HISTORY config.EXPT=myHWRF

● If all goes well, first job starts.

15

How To Run
Continue the Workflow

● After first run_hwrf.py succeeds, rerun with -f
added, every five minutes or so:
– ./run_hwrf.py -f -w 19w2014.xml -d 19w2014.db

2014 19w HISTORY config.EXPT=myHWRF

● The -f tells run_hwrf that you are continuing an
existing workflow.

● Do this in a CRON job.
– there are other ways, but that is the safest

16

How To Run
Arguments to run_hwrf.py

● ./run_hwrf.py -w 19w2014.xml -d 19w2014.db
2014 19w HISTORY config.EXPT=myHWRF

● -w 19w2014.xml
– Rocoto workflow description AND cycle list

● -d 19w2014.db
– Used by Rocoto for bookkeeping

● 2014
– Cycles to run

17

How To Run
Arguments to run_hwrf.py

● Instead of “2014”
– 2014100100-2014100718 – range of cycles
– 2014100500 – a single cycle

– 2014100500 2014100518 – two specific cycles

● Can also specify forecast ensemble members:
– 01-20 – run for all GEFS members from 1 to 20

– 03 05 07 09 – run for these four
– 01-07 13-15 – run for these ten

– Must be before storm ID argument.
– Not merged to trunk yet. Soon...

18

How To Run
Arguments to run_hwrf.py

● ./run_hwrf.py -w 19w2014.xml -d 19w2014.db 2014
19w HISTORY config.EXPT=myHWRF

● 19w
– Storm to run

● HISTORY
– HISTORY=retrospective, FORECAST=real-time

– Affects input sources, whether we wait for data

● config.EXPT=myHWRF
– Sets many paths. Must be name of parent of rocoto,

ush, parm, etc.
19

Configuring By Command Line

● Any configuration option can be overridden by
the command line when running run_hwrf.py:
– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db

2014 19w HISTORY config.EXPT=myHWRF
config.run_gsi=no archive=disk:/arch/out.tar.gz

● No need to edit config files!
● Just make sure you run the same arguments

each time. (Changing mid-storm is bad.)

20

Configuring By Command Line

● You can also send a config file:
– ./run_hwrf.py -w 19w2014.xml -d 19w2014.db

2014 19w HISTORY config.EXPT=myHWRF
../parm/hwrf_wpac_2013.conf

● Puts many configuration changes in one file
● Easy way to have many configurations in one

branch.

21

Where is Everything?

● EMC, DTC and others had different locations
for various components.

● Standardized locations were chosen.
● Original EMC locations were nonsensical.

22

Where is Everything?

● $WORKhwrf
– runwrf – forecast execution directory
– gsi_d0* – GSI
– tracker.* – trackers

– fgat.(date) – fgat initialization

– gdas.(date) – merge

– gfsinit – init based on GFS

– ensda – DA ensemble based on GFS ENKF

– regribber – GRIB processing

– intercom – more on this later

23

Where is Everything?

● inside fgat.(date) and gfsinit:
– wps – run directory for analysis time WPS

– prep – prep_hybrid

– realinit – initialization-length real_nmm

– wrfanl – creation of wrfanl files

– wrfghost – creation of wrfghost files

– realfcst – creation of wrfbdy file

– wpsfcst – forecast-length WPS, if enabled

24

Where is Everything?

● intercom
– For communicating between HWRF components

– EMC ksh system had components copying files
into and out of each other's directories

● caused many bugs, especially with init and GSI jobs

– Instead: if another job needs it, put it in intercom
● except for runwrf directory
● forecast job cannot run Python script in parallel for file

delivery

25

Where is Everything?

● jlogfile – combined logging from all cycles of
all storms
– /ptmp/$USER/myHWRF/2014100500/19W/

– /ptmp/$USER/myHWRF/log/jlogfile

● Greatly improved over prior years' jlogfile
logging.

● Same purpose and contents of NCO jlogfile

26

Troubleshooting
Overview

● The jlogfile
● Querying the Rocoto Workflow

– rocotostat

– rocotocheck

– “DEAD” jobs

● rocotorewind: resubmit jobs
● storm1.conf: change a cycle's configuration
● manually run parts of the workflow

27

Troubleshooting
jlogfile

● Workflow status questions?
– Why did my job fail?

– Was this cycle a cold start?

– When did I last run Rocoto?

– Did I start 19W yet?

– Has my 08L forecast reached hour 48 yet?

● LOOK IN THE JLOGFILE
– All significant events are logged.

28

Troubleshooting
rocotostat

● Has Rocoto given up on any jobs yet?
● What jobs and cycles have completed?

– rocotostat -w 19w2014.xml -d 19w2014.db -c ALL
– Jobs that failed too many times will be listed as

“DEAD”

– Jobs that have completed successfully are listed as
“SUCCESSFUL”

– The special “completion” job marks the end of the
workflow for that cycle

29

Troubleshooting
rocotocheck

● Why is Rocoto not submitting this job?
– rocotocheck -w 19w2014.xml -d 19w2014.db -c

201410041800 -t gsi_d02_E99

– NOTE: 12 digit cycle with minutes=00

– Look in rocotostat output for task names (ie.:
gsi_d02_E99)

30

Troubleshooting
Resubmitting Jobs: rocotorewind

● Rocoto, please resubmit these jobs.
– rocotorewind -w 19w2014.xml -d 19w2014.db -c

201410041800 -c 201410050000 -t
atmos_forecast_E99 -t unpost_E99 -t post_E99 -t
post_helper_E99

– NOTE: 12 digit cycle (minutes=00)

– You can specify multiple tasks and cycles.
– DISABLE YOUR CRON JOB before doing this if you

are going to run rocotorewind multiple times, or it may
submit jobs in between.

31

Troubleshooting
Where are the rocoto* commands?

● Don't use the Jet/Zeus default Rocoto!!
– We have our own Rocoto for now.

● Look in ush/hwrf_pre_job.ksh.inc.
– varies based on the system

– may change in the future

● Add them to your $PATH:
– sh: export PATH=/path/to/rocoto/bin:$PATH

– csh: setenv PATH /path/to/rocoto/bin:$PATH

32

Troubleshooting
Changing a Cycle's Configuration

● Changing parm/*.conf and run_hwrf.py
arguments does not affect started cycles.

● $COMhwrf/storm1.conf
– Contains the cycle's configuration.

– Result of merging many conf files into one during
exhwrf_launch.py job.

33

Troubleshooting
Manually Running Parts of the Workflow

● Useful for debugging.
● Step 1: get an interactive job:

– qsub -I -q debug -l partition=ujet:tjet:sjet:vjet:njet -A
hwrfv3 -l procs=32 -d . -l walltime=00:30:00

● Step 2: set up environment:
– bash

– . /path/to/com/2014100418/19W/storm1.holdvars.txt

– export TOTAL_TASKS=32 (or whatever you requested)

– export PYTHONPATH=$USHhwrf

34

Troubleshooting
Manually Running Parts of the Workflow

● Step 3:
– python

● Step 4:
– import produtil.setup, hwrf_expt
– produtil.setup.setup()
– hwrf_expt.init_module()

● Step 5: run whatever you were going to run.
● Example: run the tracker:

– hwrf_expt.tracker.run()

35

Troubleshooting
Manually Running Parts of the Workflow

● Step 3:
– python

● Alternate Step 4:
– import produtil.setup, hwrf_expt, logging
– produtil.setup.setup(level=logging.DEBUG)
– hwrf_expt.init_module()

● Step 5: run whatever you were going to run.
● Example: run the tracker:

– hwrf_expt.tracker.run()

36

Troubleshooting
Manually Running Parts of the Workflow

● Alternate Step 3-5: run an ex-script instead of
running python:
– export TOTAL_TASKS=9

– $EXhwrf/exhwrf_ocean_init.py

● Some ex-scripts expect environment variables
that specify the forecast hour, domain or input
model. See $HOMEhwrf/rocoto/tasks/*.ent.

37

Future Developments

● check_hwrf.py – summarize status of HWRF
by examining logs and rocotostat

● Add wildcards to rocotorewind

● still taking feature requests

38

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

