A Highly Configurable Vortex Initialization Method for Tropical Cyclones

Eric Rappin

Dave Nolan Sharan Majumdar

HRD - Miami, FL March 24th 2011

Motivation

•Data assimilation is the future. But, currently:

- •Observations (that are assimilated) are sparse.
- •Computationally expensive.
- •Complicated with a long learning curve.

•We wish to provide an alternative to existing bogus methods.

•GFDL – axisymmetric spin-up. Asymmetries provided by asymmetric component of previous forecast at new initialization time. Too complex.

•WRF – Idealized Rankine. Axisymmetric bogus data. Asymmetry provided by smooth environmental field. Too simple.

•New bogussing technique is:

•Highly configurable to match any vortex shape.

•Specify full three dimensional wind field to minimize adjustment period.

Algorithm

Vortex Removal

- Vortex Addition
 - Radial Structure:
 - Modified Rankine Vortex
 - Willoughby Vortex
 - Vertical Structure:
 - Boundary Layer
 - Free Atmosphere

Algorithm – Vortex Removal Largely follows Kurihara et al. (1995)

10

Algorithm

- Vortex Removal
- Vortex Addition
 - Radial Structure:
 - Modified Rankine Vortex
 - Willoughby Vortex
 - Vertical Structure:
 - Boundary Layer
 - Free Atmosphere

Algorithm – Radial Structure

Modified Rankine Vortex

$$V(r) = V_{\max} \left(\frac{r}{R_{\max}}\right) \qquad r < R_{\max}$$
$$V(r) = V_{\max} \left(\frac{R_{\max}}{r}\right)^{\alpha} \qquad r > R_{\max}$$

Willoughby Vortex (Willoughby et al. 2006)

FIG. 2. A dual-exponential profile used to approximate the observed wind in Hurricane Diana on 11 Sep 1984. Here and subsequent shading indicates observed winds, and the darker curves indicate the fitted profiles.

$$V(r) = V_1 = V_{\max} \left(\frac{r}{R_{\max}}\right)^n$$

$$V(r) = V_1 \left(-w\right) + V_o w.$$

$$V(r) = V_o = V_{\max} \left[\left(-A\right) \exp\left(-\frac{r-R_{\max}}{X_1}\right) + A \exp\left(-\frac{r-R_{\max}}{X_2}\right)\right]$$

$$r \le R_1$$
$$R_1 \le r \le R_2$$
$$R_2 \le r$$

Configurable parameters:

Inner radial structure - V_{max} and R_{max} Outer radial structure - α and X_2

Algorithm – Radial Structure

Algorithm

Vortex Removal

Vortex Addition

- Radial Structure:
 - Modified Rankine Vortex
 - Willoughby Vortex
- Vertical Structure:
 - Boundary Layer
 - Free Atmosphere

Algorithm – Vertical Structure: Boundary Layer

Boundary Layer flow follows Foster (2009):

Steady state, height dependent, axisymmetric flow under a specified wind field.

$$\begin{split} &\frac{\partial U}{\partial r} + \frac{U}{r} + \frac{\partial W}{\partial z} = 0. \\ &U\frac{\partial U}{\partial r} - \frac{V^2}{r} + W\frac{\partial U}{\partial z} - fV = \frac{-1}{\rho_o}\frac{\partial P}{\partial r} + \frac{\partial}{\partial z}(K\frac{\partial U}{\partial z}). \\ &U\frac{\partial V}{\partial r} - \frac{UV}{r} + W\frac{\partial V}{\partial z} + fU = \frac{\partial}{\partial z}(K\frac{\partial V}{\partial z}). \\ &K\frac{\partial \langle V, V \rangle}{\partial z} = \frac{\tau}{\rho_o} = C_D |\vec{V}|(U, V). \end{split}$$

Configurable parameters: Boundary layer height and constant eddy diffusivity, K

Algorithm – Vertical Structure: Boundary Layer

U

V

Algorithm

Vortex Removal

Vortex Addition

- Radial Structure:
 - Modified Rankine Vortex
 - Willoughby Vortex

– Vertical Structure:

- Boundary Layer
- Free Atmosphere

Algorithm – Vertical Structure: Free Atmosphere Gaussian Decay

Configurable parameters: Altitude of maximum tangential wind, Z_{max} Decay parameters, L_{up} , L_{down} , α_1 , and α_2

Algorithm – Vertical Structure: Free Atmosphere Emanuel Theory (1986)

 $R_{max} = R_{max}(z)$ using conservation of saturated moist static energy above the boundary layer.

• V_{max} = $V_{max}(z)$ by solving for V at R_{max} noting conservation of angular momentum.

V(r, z) calculated from V(r) profile at each altitude above the boundary layer.

Configurable parameters: Boundary layer height

Outflow temperature (controls height of the vortex)

Algorithm – Vertical Structure: Matching

•Absolute angular momentum M(r, z) calculated from V(r,z).

• $\Psi(r)$ is calculated at the boundary layer top through the inward integration of vertical motion. Thus a functional relationship between Ψ an M (or $\Psi(M)$) is determined.

• $\Psi(r, z) = \Psi(M)$. Maintain constant Ψ along angular momentum surfaces as angular momentum is conserved above the boundary layer.

•U(r, z) and W(r, z) determined from $\Psi(r, z)$.

Testing - Real

- WRF-ARW 3.1.1.
- 3 Grids (27/9/3 km).
- 40 vertical levels stretched in height.
- YSU boundary layer parameterization.
 - Modified drag formulation (Donelan et al 2004; Davis et al. 2008).
- WRF 6-species microphysics (single-moment).
- RRTM longwave and Goddard shortwave parameterizations
- Grell-Devenyi ensemble cumulus package on outermost grid.

Modified Rankine (No SC) vs. Willoughby (SC)

U

V

U

V

Real: ModRank (V) vs. Willoughby (UVW) – Hour 4

U

V

U

V

U

V

U

V

U

V

Testing - Idealized

- WRF-ARW 3.1.1.
- Constant SST = $28.5 \, {}^{\circ}$ C.
- No-SAL Jordan sounding.
- No environmental flow.
- 3 Grids (27/9/3 km).
- 40 vertical levels stretched in height.
- No radiation/convection parameterization.
- YSU boundary layer parameterization.
 - Modified drag formulation (Donelan et al 2004; Davis et al. 2008).
- WRF 6-species microphysics (single-moment).

Ideal: Modified Rankine (No SC) vs. Willoughby (SC)

U

V

U

V

U

V

U

V

U

V

U

V

U

V

U

V

U

V

U

V

U

V

Willoughby (SC) vs Willoughby (SC-No Mass Pert.)

U

V

U

V

U

V

U

V

U

V

Conclusions

- A highly configurable vortex initialization methodology has been constructed that allows precision manipulation of the initial vortex structure.
- The configuration options range from the highly simplistic to the highly complex in which a continuous boundary layer/free atmosphere vortex flow with a mass conserving secondary circulation may be implemented.
- Several test cases show that initial spin-down of the vortex, from a structural perspective, is reduced when the full three dimensional wind field is accounted for.