

# **NESDIS/CIRA Activities & Plans**

HFIP Diagnostics Workshop 08/10/2012

Mark DeMaria and John Knaff NOAA/NESDIS

Kate Musgrave, Andrea Schumacher, Scott Longmore and Louie Grasso CIRA/CSU

#### Chris Slocum and Wayne Schubert CSU





## Outline

- SHIPS Diagnostic Files and Verification
- SPICE
- Global Ensemble Diagnostic Files and SPICE
- Balanced Vortex Model
- Verification of HWRF synthetic GOES imagery
- Hybrid Statistical-Dynamical Wind Speed Probabilities

#### **SHIPS** Diagnostic Files

- Simple ASCII file with SHIPS model predictors
- Input required
  - Model grib files
    - u, v, T, RH, Z at mandatory levels 1000 to 100 hPa
    - SST field if available
  - Model storm track (A-deck format)
- Output
  - ~20 kbyte ASCII file per 126 hr forecast
- Code available from CIRA
  - Currently used by: EMC; GFDL; NRL; ESRL; NCAR; SUNY-Albany; UWisc
- Much easier to generate in real time than from archived data
  - e.g., Difficult to extract and read ~500 gbyte FIM tar files
- Verification
  - HWRF and GFDL diagnostic files (against GFS analysis) monthly during 2012 season



This is already done with GFS output to create SHIPS "predictor" files available on NHC's FTP server

#### Sea surface temp (RSST)

850-200 mb shear (SHDC); 200 mb zonal wind (U20C) 200 mb temp (T200); 850-700 mb RH (RHLO) 700-500 mb RH (RHMD); 500-300 mb RH (RHHI) 200 mb divergence (D200); 850 mb vorticity (Z850)

#### Diagnostic File Example

\* HWRF 2011091018

\*

\*

\* AL14 MARIA

|          |           |         |           |       |        |         |        |           |        |         |         | STORM DATA |        |        |         |        |       |       |       |       |       |       |       |  |  |
|----------|-----------|---------|-----------|-------|--------|---------|--------|-----------|--------|---------|---------|------------|--------|--------|---------|--------|-------|-------|-------|-------|-------|-------|-------|--|--|
| NTIME OF | 22 DFLT   | ът ооб  |           |       |        |         |        |           |        |         |         |            |        |        |         |        |       |       |       |       |       |       |       |  |  |
| TIME     | (HR)      | 000 1A. | 6         | 12    | 18     | 24      | 30     | 36        | 42     | 48      | 54      | 60         | 66     | 72     | 78      | 84     | 90    | 96    | 102   | 108   | 114   | 120   | 126   |  |  |
| T.AT     | (DEG)     | 17.5    | 18.3      | 19.0  | 20.1   | 21.0    | 21.7   | 22.2      | 22.8   | 23.4    | 23.9    | 24.3       | 24.9   | 25.7   | 26.6    | 27.8   | 29.3  | 30.8  | 32.4  | 34.1  | 36.0  | 38.2  | 40.9  |  |  |
| LON      | (DEG)     | 298.1   | 297.3     | 296.7 | 296.1  | 295.6   | 294.9  | 294.4     | 294.0  | 293.4   | 292.7   | 292.1      | 291.8  | 291.4  | 291.3   | 291.1  | 291.1 | 291.2 | 291.7 | 292.4 | 293.8 | 295.9 | 299.0 |  |  |
| MAXWIND  | (KT)      | 41      | 45        | 41    | 42     | 44      | 49     | 52        | 56     | 63      | 71      | 76         | 83     | 83     | 93      | 91     | 93    | 92    | 91    | 95    | 99    | 98    | 91    |  |  |
| RMW      | (KM)      | 164     | 142       | 152   | 147    | 132     | 89     | 48        | 49     | 51      | 38      | 41         | 41     | 46     | 52      | 52     | 53    | 56    | 59    | 64    | 67    | 66    | 74    |  |  |
| MIN SLP  | (MB)      | 1006    | 1005      | 1003  | 1004   | 1001    | 997    | 990       | 987    | 979     | 970     | 962        | 956    | 951    | 951     | 945    | 945   | 942   | 942   | 943   | 946   | 946   | 951   |  |  |
| SHR MAG  | (KT)      | 18      | 19        | 19    | 20     | 18      | 17     | 16        | 16     | 16      | 14      | 11         | 12     | 17     | 20      | 22     | 25    | 28    | 27    | 26    | 32    | 39    | 44    |  |  |
| SHR DIR  | (DEG)     | 237     | 229       | 235   | 244    | 246     | 248    | 260       | 246    | 254     | 253     | 246        | 227    | 221    | 223     | 209    | 190   | 180   | 183   | 180   | 180   | 189   | 202   |  |  |
| STM SPD  | (KT)      | 11      | 9         | 12    | 10     | 10      | 7      | 7         | 8      | 8       | 7       | 7          | 9      | 9      | 12      | 15     | 15    | 17    | 18    | 22    | 28    | 36    | 9999  |  |  |
| STM HDG  | (DEG)     | 316     | 321       | 333   | 333    | 317     | 317    | 328       | 317    | 308     | 306     | 336        | 336    | 354    | 352     | 0      | 3     | 15    | 19    | 31    | 37    | 42    | 9999  |  |  |
| SST      | (10C)     | 294     | 291       | 291   | 291    | 290     | 292    | 291       | 290    | 290     | 289     | 288        | 285    | 285    | 284     | 283    | 282   | 278   | 275   | 273   | 275   | 258   | 250   |  |  |
| OHC      | (KJ/CM2)  | 9999    | 9999      | 9999  | 9999   | 9999    | 9999   | 9999      | 9999   | 9999    | 9999    | 9999       | 9999   | 9999   | 9999    | 9999   | 9999  | 9999  | 9999  | 9999  | 9999  | 9999  | 9999  |  |  |
| TPW      | (MM)      | 9999    | 9999      | 9999  | 9999   | 9999    | 9999   | 9999      | 9999   | 9999    | 9999    | 9999       | 9999   | 9999   | 9999    | 9999   | 9999  | 9999  | 9999  | 9999  | 9999  | 9999  | 9999  |  |  |
| LAND     | (KM)      | 412     | 316       | 264   | 275    | 324     | 368    | 413       | 478    | 529     | 538     | 551        | 604    | 680    | 776     | 906    | 941   | 837   | 780   | 775   | 730   | 601   | 453   |  |  |
| 850TANG  | (10M/S)   | 104     | 108       | 107   | 102    | 109     | 116    | 114       | 117    | 122     | 130     | 134        | 142    | 148    | 154     | 151    | 157   | 168   | 170   | 170   | 177   | 177   | 180   |  |  |
| 850VORT  | (/S)      | 18      | 15        | 8     | -1     | 3       | 9      | 5         | 2      | 11      | 19      | 16         | 26     | 49     | 66      | 61     | 68    | 80    | 77    | 72    | 91    | 98    | 113   |  |  |
| 200DVRG  | (/S)      | 90      | 61        | 34    | 48     | 71      | 64     | 50        | 39     | 39      | 31      | 29         | 29     | 57     | 48      | 62     | 77    | 107   | 106   | 105   | 138   | 145   | 137   |  |  |
|          |           |         |           |       |        |         |        |           |        |         |         |            |        |        |         |        |       |       |       |       |       |       |       |  |  |
|          |           |         |           |       |        |         |        |           |        |         | S       | OUNDING    | G DATA |        |         |        |       |       |       |       |       |       |       |  |  |
| NLEV 020 | 0 SURF 10 | 00 095  | 0 0 9 0 0 | 0850  | 0800 0 | 750 070 | 0 0650 | 0 0 6 0 0 | 0550 0 | 0500 04 | 450 040 | 00 035     | 0300   | 0250 ( | 0200 03 | 150 01 | 00    |       |       |       |       |       |       |  |  |
| TIME     | (HR)      | 0       | 6         | 12    | 18     | 24      | 30     | 36        | 42     | 48      | 54      | 60         | 66     | 72     | 78      | 84     | 90    | 96    | 102   | 108   | 114   | 120   | 126   |  |  |
| T SURF   | (10C)     | 287     | 286       | 286   | 285    | 284     | 284    | 284       | 283    | 283     | 282     | 282        | 281    | 280    | 279     | 277    | 274   | 271   | 267   | 261   | 249   | 233   | 209   |  |  |
| R SURF   | (%)       | 79      | 79        | 79    | 79     | 78      | 78     | 78        | 78     | 78      | 78      | 78         | 78     | 78     | 79      | 79     | 78    | 78    | 78    | 78    | 78    | 76    | 74    |  |  |
| P_SURF   | (MB)      | 1012    | 1013      | 1013  | 1015   | 1015    | 1016   | 1015      | 1017   | 1014    | 1016    | 1013       | 1014   | 1012   | 1013    | 1010   | 1011  | 1009  | 1010  | 1008  | 1009  | 1008  | 1009  |  |  |
| U_SURF   | (10KT)    | -117    | -121      | -121  | -112   | -105    | -102   | -85       | -85    | -85     | -82     | -68        | -65    | -68    | -75     | -59    | -37   | -13   | -2    | 39    | 60    | 85    | 106   |  |  |
| V SURF   | (10KT)    | 11      | -5        | 13    | 17     | 19      | 9      | 28        | 12     | 22      | 15      | 29         | 19     | 23     | 26      | 35     | 25    | 26    | 31    | 48    | 30    | 24    | 26    |  |  |
| T_1000   | (10C)     | 277     | 277       | 274   | 270    | 269     | 269    | 266       | 264    | 266     | 267     | 266        | 265    | 268    | 269     | 267    | 265   | 265   | 264   | 257   | 242   | 229   | 210   |  |  |
| R_1000   | (%)       | 73      | 73        | 75    | 77     | 78      | 79     | 80        | 81     | 81      | 81      | 81         | 81     | 80     | 79      | 79     | 78    | 76    | 75    | 78    | 80    | 80    | 81    |  |  |
| Z_1000   | (DM)      | 11      | 12        | 11    | 13     | 13      | 14     | 13        | 15     | 12      | 14      | 11         | 13     | 10     | 11      | 9      | 10    | 8     | 9     | 7     | 8     | 7     | 7     |  |  |
| U_1000   | (10KT)    | -141    | -143      | -142  | -132   | -124    | -122   | -101      | -102   | -101    | -99     | -81        | -78    | -80    | -89     | -68    | -43   | -14   | -1    | 45    | 70    | 96    | 121   |  |  |
| V_1000   | (10KT)    | 14      | -5        | 17    | 23     | 24      | 13     | 35        | 17     | 27      | 19      | 35         | 25     | 29     | 34      | 44     | 32    | 32    | 40    | 58    | 39    | 32    | 35    |  |  |
| T_0950   | (10C)     | 235     | 235       | 232   | 228    | 228     | 227    | 225       | 223    | 225     | 226     | 225        | 224    | 226    | 227     | 226    | 224   | 224   | 223   | 217   | 204   | 192   | 175   |  |  |

.

#### Diagnostic Verification – HWRF and GFDL 2012 AL



#### Diagnostic Verification – HWRF and GFDL 2012 EP



# **SPICE** (Statistical Prediction of Intensity from a Consensus Ensemble)

#### **Model Configuration for Consensus**



- SPICE forecasts TC intensity using a combination of parameters from:
  - Current TC intensity and trend
  - Current TC GOES IR
  - TC track and large-scale environment from GFS, GFDL, and HWRF models
- These parameters are used to run DSHP and LGEM based off each dynamical model
- The forecasts are combined into two unweighted consensus forecasts, one each for DSHP and LGEM
- The two consensus are combined into the weighted SPC3 forecast <sup>7</sup>

#### Verification of SPICE – 2012 HFIP Stream 1.5 (SPC3)



SPC3 – 2009-2011 Retrospective Runs

SPCR – 2009-2011 Retrospective Runs

Average Intensity Error (solid) and bias (dashed) (kt)

#### **Global Ensemble Diagnostic Files and SPICE**



- In August 2012 CIRA will begin producing diagnostic files from the GFS and FIM global ensembles
  - Verification of diagnostic files
  - Input to SPCG (Stream 2 configuration of SPICE using global model ensembles)







8

6

4

2

0

-2

-4

-6

-8

#### Determining Tropical Cyclone Intensity Change through Balanced Vortex Model (BVM) Applications



- Based on Eliassen's (1951) work but solves for the geopotential tendency equation.
- Assumes: Inviscid, Axisymmetric, Quasistatic, Gradient Balanced, Stratified, *f*-plane.
- Location of the diabatic heating in relation to the profile of inertial stability (IS) indicates BVM response.
  - Outside the high IS region
  - Near the high IS region
  - Inside the high IS region

#### Diagnosing the Influence of Diabatic Heating on HWRF Intensity Change Using a Balanced Vortex Model (BVM)

- HWRF flight level (700 hPa) wind and diabatic heating (DH) are applied to balanced vortex theory.
- The tangential velocity tendency is computed from HWRF's DH using the geopotential tendency equation.
- The HWRF and BVM intensity changes are compared showing the influence of DH on HWRF's intensity change.
- The intensity change from HWRF relates well to the theory which shows that the BVM can be used as a fast and elegant diagnostic tool.

#### Hurricane Irene 2011 (24hr Prediction)



# Infrared T<sub>B</sub> Verification

- Use radiative transfer code to calculate synthetic infrared (IR) data from HWRF output
  - GOES channel 3 (water vapor) and 4 (window channel)
- Compare synthetic IR with real GOES data
- Mean absolute error, bias, brightness temperature histograms
- Compare verification for H212 and 2011 operational HWRF
- Preliminary tests with Irene and Maria(2011) cases

### Comparison of Operational HWRF and H212 for 2010-2011 East Pacific Cases



Synthetic GOES WV Image 24 hr HWRF Forecast valid at 00 UTC on 13 Sept 2011 Real GOES WV Image at 00 UTC on 13 Sept 2011

### Validation of GOES Ch3 and Ch4 for Hurricane Irene and Maria Forecasts



### GOES Water Vapor T<sub>B</sub> Histograms for 48 h Maria Forecasts



(Dashed= Model, Solid=Observed)

### HWRF Operational and H212 GOES WV Imagery Comparison



### Hybrid Statistical-Dynamical Wind Speed Probabilities

- Methodology similar to NHC's operational wind speed probability algorithm
  - 1000 forecast realizations generated by sampling from NHC track and intensity distributions, using radii CLIPER model
  - Serial correlation of errors included
  - Probability at a point from counting number of realizations passing within the wind radii of interest
- Hybrid uses nearly the same methodology except: realization tracks are replaced with global model ensemble tracks
- Uses up to 93\* global model ensemble track forecasts used
  - GFS (control + 20 perturbations)
  - CMC (control + 20 perturbations)
  - ECMWF (control + 50 perturbations)

#### Hybrid Statistical-Dynamical Wind Speed Probabilities (cont...)

- CIRA will test prototype in real-time beginning in August 2012
- Will provide diagnostic of global model ensemble TC track forecasts
  - Graphical output displayed on HFIP prototype web page for evaluation
  - 2012 validation will compare Hybrid with Operational WSP
- Example: Tropical Storm Debby, 6/24/12 0Z (below)
  - GFS ensembles were split between two types of track; WNW or NE
  - Hybrid WSP (right) capable of representing split track scenario whereas operational WSP cannot – potential benefit of using ensembles





Hybrid WSP model (GFS only)

### Summary

- SHIPS diagnostic files provide easy way to inter-compare model forecasts
  - Provides additional forecast metrics
  - Currently being produced by several model groups
- SPICE had better error statistics than SHIPS and LGEM in the Atlantic basin
  - Consistent in 2008-2010 Retrospective Runs, 2011 Demonstration, and 2009-2011 Retrospective Runs
  - SPC3 showed skill improvements of up to 5-10% over SHIPS and LGEM
- SPICE model should benefit from greater diversity of input models
  - SPCR and SPCG will be generated starting August 2012, from additional regional models and global model ensembles, respectively
  - Use model forecast intensity changes and diagnostic files to fit SHIPS coefficients for examination of model TC behavior in relation to environment
- Balanced vortex model being applied to diagnose effect of diabatic heating on tropical cyclone intensification in HWRF model
- Cold bias in HWRF synthetic GOES data
  - Upper tropospheric moist bias
  - More active deep convection
- Hybrid Statistical-Dynamical Wind Speed Probabilities will be generated starting August 2012, available on hfip.org
  - Shows ability to represent bifurcating track forecasts compared to statistical wind speed probabilities