Running Global Model Parallel Experiments
* Internal NCEP users *
[image: image6.bmp]
Version 2.0
October 11th, 2011
NOAA/NWS/NCEP/EMC
Global Climate and Weather Modeling Branch

Welcome!

So you'd like to run a GFS experiment? This document will help get you going and provide information on running global model parallel experiments, whether it be on Vapor or one of the CCS machines.

Before continuing, some information:
· This document is for users who can access the R&D (Vapor) or CSS (Cirrus/Stratus) NCEP machines.

· This document assumes you are new to using the GFS model and running GFS experiments but that you are accustom to the NCEP computing environment.

· If at any time you are confused and can't find the information that you need please email:
· ncep.list.emc.glopara-support@noaa.gov
· Also, for Global Model Parallel support feel free to subscribe to the following glopara listservs:
· Glopara support
https://lstsrv.ncep.noaa.gov/mailman/listinfo/ncep.list.emc.glopara-support
· Glopara announcements
https://lstsrv.ncep.noaa.gov/mailman/listinfo/ncep.list.emc.glopara-announce
· For Global Spectral Model (GSM) documentation:

· http://www.emc.ncep.noaa.gov/GFS/doc.php

Table of Contents:
	Operational Global Forecast System overview………………………………………………………
	3

	Experimental Global Forecast System overview…………………………………………………….
	5

	
Experimental scripts………………………………………………………………………….
	7

	
Setting up experiment………………………………………………………………………..
	8

	
Terms to know……………………………………………………………………………….
	8

	
Configuration file…………………………………………………………………………….
	9

	
Rlist…………………………………………………………………………………………..
	10

	
Submitting your experiment job……………………………………………………………..
	11

	
Experiment troubleshooting………………………………………………………………….
	12

	Utilities……………………………………………………………………………………………….
	12

	Notes…………………………………………………………………………………………………
	12

Contacts:

· Global Model Exp. POC - Kate Howard (kate.howard@noaa.gov) – 301-763-8000 ext 7259
· Global Branch Chief – John Ward (john.ward@noaa.gov) – 301-763-8000 ext 7185

Operational Global Forecast System (GFS) Overview:
The Global Forecast System (GFS) is a three-dimensional hydrostatic global spectral model run operationally at NCEP. The GFS consists of two runs per six-hour cycle (00, 06, 12, and 18 UTC), the "early run" gfs and the "final run" gdas. Both the terms "GFS" and "GDAS" will take on two meanings in this document.

	GFS
	(all caps) refers to the entire Global Forecast System suite of jobs (see flow diagram in next section), which encompasses the gfs (next bullet) and gdas.

	gfs
	(all lower case) refers to the "early run". In real time, the early run, is initiated approximately 2 hours and 45 minutes after the cycle time. The early gfs run gets the full forecasts delivered in a reasonable amount of time.

	GDAS
	(all caps) refers to the Global Data Assimilation System.

	gdas
	(all lower case) refers to the "final run", which is initiated approximately six hours after the cycle time.. The delayed gdas allows for the assimilation of later arriving data. The gdas run includes a short forecast (nine hours) to provide the first guess to both the gfs and gdas for the following cycle.

Timeline of GFS and GDAS*:

[image: image2.jpg]00
uTC

18
uTC

06
uTcC

12
uTC

* Times are approximate

Each operational run consists of six main steps*:

	dump**
	Gathers required (or useful) observed data and boundary condition fields (done during the operational GFS run); used in real-time runs, already completed for archived runs.

	storm relocation***
	In the presense of tropical cyclones this step adjusts previous gdas forecasts if needed to serve as guess fields. For more info, see the relocation section of Dennis Keyser's Observational Data Dumping at NCEP document.

	prep
	Prepares the data for use in the analysis (including quality control, bias corrections, and assignment of data errors) For more info, see Dennis Keyser's PREPBUFR PROCESSING AT NCEP document.

	analysis
	Runs the data assimilation (currently, Gridpoint Statistical Interpolation, or GSI)

	forecast
	From the resulting analysis field, runs the forecast model out to specified number of hours (9 for gdas, 384 for gfs)

	post
	Converts resulting analysis and forecast fields to WMO grib for use by other models and external users.

* Additional steps run in experimental mode are the verification (gfsvrfy/gdasvrfy) and archive (gfsarch/gdasarch) jobs (pink boxes in flow diagram in next section).
** Unless you are running your experiment in real-time, the dump steps have already been completed by the operational system (gdas and gfs) and the data is already waiting in a directory referred to as the dump archive.
*** The storm relocation step is included in the prep step (gfsprep/gdasprep) for experimental runs.
Next page – Global Forecast System Experiment Overview
Global Forecast System (GFS) Experiment Overview:

[image: image3.png]gdasprep

v

gdasangu

v

gdasanal

R S

gdasfest1

R S

gdaspost1|

Global Model Parallel Sequencing

gfsprep

v

gfsanal

v

gfsfest1

v

gfspost1

T
3

Image 1: Flow diagram of a typical experiment
GFS experiments employ the global model parallel sequencing (shown above). The system utilizes a collection of job scripts that perform the tasks for each step. A job script runs each step and initiates the next job in the sequence.
Example: When the prep job finishes it submits the analysis job. When the analysis job finishes it submits the forecast job, etc.
As with the operational system, the gdas provides the guess fields for the gfs. The gdas runs for each cycle (00, 06, 12, and 18 UTC), however, to save time and space in experiments the gfs (right side of the diagram) is initially setup to run for only the 00 UTC cycle. (See the "run GFS this cycle?" portion of the diagram) The option to run the GFS for all four cycles is available (see gfs_cyc variable in configuration file).
The steps described in the table on page four are the main steps for a typical operational run. An experimental run is different from operations in the following ways:

· Dump step is not run as it has already been completed during the real-time production runs

· Addition steps in experimental mode:

· verification (vrfy)
· archive (arch)
Image 1 above can be further expanded to show the scripts/files involved in the process:

[image: image4.png]Global Model Parallel Sequencing

anal.sh

fest.sh

post.sh

En

arch.sh

gdas

s)b

prep.sh
v
anal.sh
-
fest.sh *gf,:m? -
YES :
o
post.sh fest.sh
b !
2
segment? post.sh
No
L2 l
vrfy.sh vrfy.sh

3|y uopenByuos

The next pages will provide information on the following:

· Experimental job scripts

· Setting up your experiment

· Additional notes and utilities

Main Directories for Experimental Scripts:
/mtb/save/glopara/trunk/para (vapor)
/global/save/glopara/trunk/para (cirrus/stratus)

Subdirectories:
/bin These scripts control the flow of an experiment.
	psub
	Submits parallel jobs (check here for variables that determine resource usage, wall clock limit, etc).

	pbeg
	Runs when parallel jobs begin.

	perr
	Runs when parallel jobs fail.

	pend
	Runs when parallel jobs end.

	plog
	Logs parallel jobs.

	pcop
	Copies files from one directory to another.

	
	

	pmkr
	Makes the rlist, the list of data flow for the experiment.

	pcon
	Searches standard input (typically rlist) for given pattern (left of equal sign) and returns assigned value (right of equal sign). Generally called within other utilities.

	pcne
	Counts non-existent files

/jobs These scripts, combined with variable definitions set in configuration, are similar in function to the wrapper scripts in /nwprod/jobs, and call the main driver scripts.

	prep.sh
	Runs the data preprocessing prior to the analysis (storm relocation if needed and generation of prepbufr file).

	angu.sh
	Angle update script, additional step in analysis.

	anal.sh
	Runs the analysis. (Default ex-script does the following: 1) update surface guess file via global_cycle to create surface analysis; 2) runs the atmospheric analysis (global_gsi); 3) updates the angle dependent bias (satang file))

	fcst.sh
	Runs the forecast.

	post.sh
	Runs the post processor.

	vrfy.sh
	Runs the verification step.

	arch.sh
	Archives select files (online and hpss) and cleans up older data.

	dump.sh
	Retrieves dump files (not used in a typical parallel run).

	dcop.sh
	This script sometimes runs after dump.sh and retrieves data assimilation files.

	copy.sh
	Copies restart files. Used if restart files aren't in the run directory.

/exp This directory typically contains config files for various experiments and some rlists.
	Filenames with "config" in the name are configuration files for various experiments. Files ending in "rlist" are used to define mandatory and optional input and output files and files to be archived.

/scripts - Development versions of the the main driver scripts.

	The production version of these scripts are in /nwprod/scripts.

/ush - Additional scripts pertinent to the model typically called from within the main driver scripts also includes:

	reconcile.sh
	This script sets required, but unset variables to default values.

--

Setting up an Experiment:
Steps:

1. Do you have restricted data access? If not go to the following webpage and submit a registration form to be added to group rstprod: http://www.nco.ncep.noaa.gov/sib/restricted_data/restricted_data_sib/
2. Terms and other items to know about

3. Set up experiment configuration file

4. Set up rlist

5. Submit first job

Additional information:

· Data file names (glopara vs production) (see appendix A)
· Global model variables (see appendix B)
· Finding GDAS/GFS production files (see appendix C)
Terms and other items to know about:
	configuration file
	List of variables to be used in experiment and their configuration/value. The user can change these variables for their experiment. See Appendix B.

	job
	A script, combined with variable definitions set in configuration, which is similar in function to the wrapper scripts in /nwprod/jobs, and which calls the main driver scripts. Each box in above diagram is a job.

	pr
	Acronym for parallel experiments. Experiment names should look like: pr$PSLOT ($PSLOT is described in the next section)

	reconcile.sh
	Similar to the configuration file, the reconcile.sh script sets required, but unset variables to default values.

	rlist
	List of data to be used in experiment. Created in reconcile.sh (when the pmkr script is run) if it does not already exist at beginning of experiment.

	rotating directory (a.k.a. ROTDIR and COMROT)
	Typically your "noscrub" directory is where the data and files from your experiment will be stored. Set in configuration file.
Ex: /global/noscrub/wx24kh/prtest --> /global/noscrub/$LOGNAME/pr$PSLOT

Setting up experiment configuration file:
The following files have settings that will produce results that match production results. Copy this file, or any other configuration file you wish to start working with, to your own space and modify it as needed for your experiment.
Please review README file in sample configuration file location for more information.
	Sample config file
	Vapor
/mtb/save/glopara/trunk/para/exp
	Cirrus/Stratus
/global/save/glopara/trunk/para/exp

	Valid 5/9/11 - present
	para_config_gfs
	para_config_gfs

	Valid 5/9/11 - present
	para_config_gfs_prod*
	para_config_gfs_prod*

* setup to match production forecast and post processed output

Make sure to change the following user specific configuration file variables, found near the top of the configuration file:

	ACCOUNT
	LoadLeveler account, i.e., GFS-MTN (see more examples below for ACCOUNT, CUE2RUN, and GROUP)

	ARCDIR
	Online archive directory (i.e. ROTDIR/archive/prPSLOT)

	ATARDIR
	HPSS tape archive directory (see configuration file for example)

	COMROT
	Rotating/working directory. Also see ROTDIR description

	CUE2RUN
	LoadLeveler class for parallel jobs (i.e., dev) (see more examples of CUE2RUN below)

	EDATE
	Analysis/forecast cycle ending date (YYYYMMDDCC, where CC is the cycle)

	EDUMP
	Cycle ending dump (gdas or gfs)

	ESTEP
	Cycle ending step (prep, anal, fcst1, post1, etc.)

	EXPDIR
	Experiment directory under save, where your configuraton file, rlist, runlog, and other experiment scripts sit.

	GROUP
	LoadLeveler group (i.e., g01) (see more examples of GROUP below)

	PSLOT
	Experiment ID (change this to something unique for your experiment)

	ROTDIR
	Rotating/working directory for model data and i/o. Related to COMROT. (i.e. /global/noscrub/wx24kh/prPSLOT)

A description of some global model variables that you may wish to change for your experiment can be found in Appendix B.

	ACCOUNT
examples
	Variable
	Global/GFS
	JCSDA

	
	ACCOUNT
	GFS-MTN (C/S)
	MTB001-RES (V)
	JCSDA008-RES

	
	CUE2RUN
	class1 (C/S)
	mtb (V)
	jcsda

	
	GROUP
	g01 (C/S)
	mtb (V)
	jcsda

* C = Cirrus, S = Stratus, V = Vapor
Please make sure to take a look at the current reconcile script to assure that any changes you made in the configuration file are not overwritten. The reconcile script runs after reading in the configuration file settings and sets default values for many variables that may or may not be defined in the configuration file. If there are any default choices in reconcile that are not ideal for your experiment make sure to set those in your configuration file, perhaps even at the end of the file after reconcile has been run.

--

Setting up an rlist:
If you do not want to use the rlist generated by reconcile.sh and wish to create your own, you could start with an existing rlist and modify it by hand as needed. Some samples exist in the exp subdirectory:
Vapor: /mtb/save/glopara/trunk/para/exp/prtrunktest0.gsi.rlist.sample*
Cirrus/Stratus: /global/save/glopara/trunk/para/exp/prtrunktest0.gsi.rlist.sample*
* The sample rlist files already contain the append.rlist entries.

A brief overview of the rlist format can be found in Appendix D.

If the rlist file does not exist when a job is submitted, pmkr will generate one based on your experiment configuration. When creating the rlist on the fly, check the resulting file carefully after that first job is complete to ensure all required files are represented. If you find anything missing, you can manually edit the rlist using your favorite text editor and then continue the experiment from that point.

The pmkr script does not account for files to be archived (eg, ARCR, ARCO, ARCA entries). The current standard practice is to put those entries in a separate file. Eg, see:

Vapor: /mtb/save/glopara/trunk/para/exp/append.rlist
Cirrus/Stratus: /global/save/glopara/trunk/para/exp/append.rlist

Then define variable $append_rlist to point to this file.

If the variable $ARCHIVE is set to YES (the default is NO), this file is then appended automatically to the rlist by reconcile.sh, but only when the rlist is generated on the fly by pmkr. So, eg, if you submit the first job, which creates an rlist and then you realize that your ARCx entries are missing, creating the append_rlist after the fact won't help unless you remove the now existing rlist. If you delete the errant rlist (and set $ARCHIVE to YES, the next job you submit will see that the rlist does not exist, create it using pmkr, then append the $append_rlist file.

Also, along those lines, you may find that pmkr does not account for some new or development files. You can list those needed entries in the file pointed to by variable $ALIST. The difference between $ALIST and $append_rlist is that the latter only gets appended if variable $ARCHIVE is YES.

Got all that?? (Now you know why it is sometimes easier to start with an existing rlist).

To submit first job:
a) Using submit script (else see b)

1) Obtain a copy of submit.sh from:
/mtb/save/glopara/trunk/para/exp (Vapor)
/global/save/glopara/trunk/para/exp (Cirrus/Stratus)

2) Save submit.sh in your EXPDIR
3) From your EXPDIR, run submit.sh:
./submit.sh $CONFIG $CDATE $CDUMP $CSTEP
4) This script kicks off experiment.

b) Manually

1) Create directory ROTDIR (defined in configuration file)

2) Acquire required forcing files and place in ROTDIR:

1) biascr.$CDUMP.$CDATE

2) satang.$CDUMP.$CDATE

3) sfcanl.$CDUMP.$CDATE

4) siganl.$CDUMP.$CDATE

(More about finding the required files can be found in Appendix C)
3) From EXPDIR, on command line type:

$PSUB $CONFIG YYYYMMDDCC $CDUMP $CSTEP

Where:
$PSUB = psub script with full location path, see configuration file for psub script to use.
$CONFIG = name of configuration file (assumes the file is in your COMROT)
YYYYMMDDCC = initial/starting year (YYYY), month (MM), day (DD), and cycle (CC) for model run
$CDUMP = dump (gdas or gfs) to start run
$CSTEP = initial model run step (see flow diagram above for options)
Ex: /global/save/wx23sm/para_scripts/cver_1.1/bin/psub para_config 2007080100 gdas fcst1

Additional information about running an experiment:

· Remember that since each job script starts the next job, you need to define ESTEP as the job that follows the step which you wish to end on. For example: You want to finish when the forecast has completed and the files are processed...your ESTEP could be "prep", which is the first step of the next cycle.

· The script "psub" kicks off the experiment and each parallel sequenced job.

To check the status of your experiment/jobs, check out the load leveler queue by typing "llq" on the command line.

	llq
	Load leveler queue

	llq -l
	More information

	llq -u $LOGNAME
	Status of jobs running by user $LOGNAME (your username)

--

Experiment Troubleshooting:
As model implementations occur, ensure that you are using up-to-date versions of scripts/code and configuration file for your experiment. For instance, don't use the newest production executables with older job scripts. Changes may have been made to the production versions that will impact your experiment but may not be obvious.

For problems with your experiment please contact: ncep.list.emc.glopara-support
Please make sure to provide the following information in the email:

· Machine you are working on (Vapor, Cirrus or Stratus)

· EXPDIR, working directory location

· Configuration file name and location

· Any other specific information pertaining to your problem, i.e., dayfile name and/or location.

--

Related utilities:
Some information on some useful related utilities can be found at:

	copygb.info
	copygb copies all or part of one GRIB file to another GRIB file, interpolating if necessary

	sfchdr.info
	global_sfchdr prints information from the header of a surface file

	sighdr.info
	global_sighdr prints information from the header of a sigma file

	ss2gg.info
	ss2gg converts a sigma file to a grads binary file and creates a corresponding descriptor (ctl) file

Notes:
USING OLD CONFIGURATION FILES WITH NEW SCRIPTS:
There are many sets of these scripts to run the global model. Some are several years old. There have been a number of contributers, each with their own programming style and set of priorities. If you have a configuration file that worked with one set of scripts, don't expect that same file to do what you want with a different set of scripts. Variables that used to do what you want, may no longer do anything or default settings may change. So, look over the set of scripts you are using to see what changes might be needed and then check your output carefully.

RECONCILE:

If info added to alist after rlist has been generated, that rlist must be removed/renamed. Otherwise info from alist won't be picked up.
CLEAN UP:
Disk space is often at a premium. The arch.sh job scrubs older files based on the settings of the various HRK* variables. Adjust those values as suits your needs and space limitations. If you find your older data is not getting scrubbed, check that the archive jobs for that dump are running. If they are, check arch dayfile output to determine which cycles those jobs are attempting to scrub. (If you are running, only 00Z gfs cycles, ensure your HRK values are all some multiple of 24). If some archive jobs are not getting submitted at all, check that the vrfy.sh job is completing. (...a common culprit). Note also, if you are copying select files to an online archive in delayed mode (ARCHDAY is often set to 2 days for real-time runs), be sure your HRK values for those files is sufficient such that those files are copied to the online archive before they are scrubbed. (HRKROT handles files that are typically copied to an online archive).
COPY:
copy.sh will call chgres for first guess fields even if no change is needed unless COPYCH=NO (or anything other than "YES")
PATH:
Some scripts assume that "." is included in the users PATH. Check for this if unexpected errors occur. (The error msg isn't always clear).
 SHAPE * MERGEFORMAT

2

[image: image1.png]

[image: image5]