RELEASE NOTES - GSM v12.0.0

(Prepared by Fanglin Yang)

v12.0.0 - released August 04, 2014

CODE CHANGES

- convert GFS GSM to vertical structure
- upgrade GSM for use in T1534 GFS package
- upgrade from current operational T574 Eulerian (~23km) to T1534 Semi-Lagrangian (~13km)
- Use high resolution daily RGT SST instead of weekly OI SST, and use daily sea ice analysis
- Extend high resolution forecast from 8 days to 10 days
- Use McICA radiation approximation
- Reduced drag coefficient at high wind speeds
- Hybrid EDMF PBL scheme and TKE dissipative heating
- Retuned ice and water cloud conversion rates, background diffusion of momentum and heat
- Retuned orographic gravity-wave forcing and mountain block, etc.
- Change from Lagrangian to Hermite interpolation in the vertical to reduce stratospheric temperature cold bias
- Restructured physics and dynamics restart fields and updated sigio library
- Consistent diagnosis of snow accumulation in post and model
- Compute and output frozen precipitation fraction
- Divergence damping in the stratosphere to reduce noise
- Added a tracer fixer for maintaining global column ozone mass
- Stationary convective gravity wave drag
- New blended snow analysis to reduce reliance on AFWA snow
- Changes to treatment of lake ice to remove unfrozen lake in winter
- Modified initialization to reduce a sharp decrease in cloud water in the first model time step
- Correct a bug in the condensation calculation after the digital filter is applied
- Accumulation bucket changed from 12 hour to 6 hour between day 8 and day 10
- Land Surface changes:
 - Replace Bucket soil moisture climatology by CFS/GLDAS
 - Add the vegetation dependence to the ratio of the thermal and momentum roughness
 - Fixed a momentum roughness issue

FORECAST JOB CHANGES

- JGDAS_FORECAST_HIGH, JGFS_FORECAST_HIGH, JGFS_FORECAST_LOW are updated
 - JGDAS_FORECAST_HIGH and JGFS_FORECAST_HIGH: updated to run T1534 semi-Lag GSM
 - o JGFS FORECAST_LOW: Updated to run T574 semi-Lag GSM.
 - Added an option "SPINUPLOW" to run with and without a 12-hour spin-up.
 - If SPINUPLOW=YES, the job will follow the current operational flow, i.e., start from high-res output at fh228, run chgres, run forecast for 12 hours with FHDFI=3, then restart fcst2 from sigr1/sigr2/sfcr at fh240 with FHDFI=0.
 - If SPINUPLOW=NO, fcst2 will start from high-res output at fh240, run chgres, and run forecast from SIGI and SFCI produced by chgres with FHDFI=3.
 - For this implementation, SPINUPLOW=NO.

JOB SCRIPT CHANGES

 scripts/exglobal_fcst.sh.ecf: updated for running semi-lag GSM. removed obsolete fixed fields.

USH SCRIPT CHANGES

• ush/global_chgres.sh and ush/global_cycle.sh are updated to prepare and process T1534 forecast files and initial/boundary conditions.

FIX and PARM FIELDS CHANGES

- fix directory is divided into subdirectories as fix_am, fix_om and fix_lm.
 - Additional fields for running T1534 and T574 semi-lag GSM were added. A new standard file name convention is used to name fixed fields for all model resolutions.
- parm directory is divided into parm_am, parm_lm, parm_om and parm_sib.
 - All files are updated for running T1534/T574 semi-lag GSM.

SOURCE CODE INFORMATION

- Five applications are included in ./sorc directory and are used by the above three JJOBS:
 - o global_chgres.fd
 - o global cycle.fd
 - global_fcst.fd
 - global_sfchdr.fd

o global_sighdr.fd

COMPUTING RESOURCE INFORMATION

JGDAS FORECAST HIGH

current operation: 145 tasks, ptile(threads)=4, 4 tasks/node, 36 nodes, ~3.6 minutes proposed package: 432 tasks, ptile(threads)=4, 4 tasks/node, 108 nodes, ~3.6 minutes

JGFS_FORECAST_HIGH

current operation: 133 tasks, ptile(threads)=4, 4 tasks/node, 34 nodes,

~8.3 min/day for 8 days, total 66.4 minutes

proposed package: 432 tasks, ptile(threads)=4, 4 tasks/node, 108 nodes,

~8.3 min/day for 10 days, total 83 minutes

JGFS FORECAST LOW

current operation: 64 tasks, ptile(threads)=8, 2 tasks/node, 32 nodes,

~1.4 min/day for 8 days, 2 minutes fr chgres, total 14.0 minutes

proposed package: 216 tasks, ptile(threads)=8, 2 tasks/node, 108 nodes,

~2.0 min/day for 6 days, 3 minutes for chgres, total 15 minutes

VERSIONS OF LIBRARIES, COMPILERS AND SHARED CODE BEING USED

libraries

SIGIO_VER=v2.0.1

W3NCO VER=v2.0.6

W3EMC VER=v2.0.5

SP_VER=v2.0.2

BACIO_VER=v2.0.1

NEMSIO VER=v2.2.1

IP VER=v2.0.0

SFCIO_VER=v1.0.0

GFSIO VER=v1.1.0

LANDSFCUTIL VER=v2.0.0

- compiler (modules loaded during GSI build / run)
 - o ics/14.0.1
 - o Isf/9.1
 - /usrx/local/Modules/3.2.10/init/ksh
- Data retention for files in /com and /nwges under prod/para/test environments
 - same as current operations

PRE-IMPLEMENTATION TESTING REQUIREMENTS

- which production jobs should be tested as part of this implementation?
 - GSM v12.0.0 should be tested as part of the T1534 GFS package
- does this change require a 30-day evaluation?
 - o YES
- suggested evaluators
 - same as rest of T1534 GFS package

DISSEMINATION INFORMATION

- where should this output be sent?
 - same as current operational GFS/GDAS Forecasts
- who are the users?
 - same as current operational GFS/GDAS Forecasts
- which output files should be transferred from PROD WCOSS to DEV WCOSS?
 - same as current operational GFS/GDAS Forecasts

HPSS ARCHIVE

- retention length?
 - same as current operational GFS/GDAS Forecasts
- list which output files should be archived
 - same as current operational GFS/GDAS Forecasts

IMPLEMENTATION INSTRUCTIONS

To implement gsm v12.0.0, please do the following:

- > mkdir gsm.v12.0.0 in appropriate /nw\${envir}
- > cd /nw\${envir}/gsm.v12.0.0
- > svn checkout https://svnemc.ncep.noaa.gov/projects/gfs/branches/gsm_gfsimplementation
- > cd /nw\${envir}/gsm.v12.0.0/sorc/global chgres.fd, execute makefile.sh
- > cd /nw\${envir}/gsm.v12.0.0/sorc/global_cycle.fd, execute makefile.sh
- > cd /nw\${envir}/gsm.v12.0.0/sorc/global fcst.fd, execute makefile.sh
- > cd /nw\${envir}/gsm.v12.0.0/sorc/global sfchdr.fd.fd, execute makefile.sh
- > cd /nw\${envir}/gsm.v12.0.0/sorc/global sighdr.fd.fd, execute makefile.sh

JOB DEPENDENCIES

- JGDAS_FORECAST_HIGH has the following upstream / downstream dependencies
 - upstream
 - triggered upon completion of JGDAS_ANALYSIS_HIGH
 - downstream
 - triggers JGDAS_NCEPPOST
- JGFS_FORECAST_HIGH has the following upstream / downstream dependencies
 - upstream
 - triggered upon completion of JGFS_ANALYSIS
 - downstream
 - triggers JGFS_NCEPPOST and JGFS_FORECAST_LOW
- JGFS_FORECAST_LOW has the following upstream / downstream dependencies
 - upstream
 - triggered upon completion of JGFS_FORECAST_HIGH
 - downstream
 - triggers JGFS_NCEPPOST